Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Space Res ; 4(12): 207-16, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-11537777

RESUMO

Tropospheric nitrous oxide concentration has increased by 0.2-0.4% per year over the period 1975 to 1982, amounting to net addition to the atmosphere of 2.8-5.6 Tg N2O-N per year. This perturbation, if continued into the future, will affect stratospheric chemical cycles, and the thermal balance of the Earth. In turn it will have direct and indirect global effects on the biosphere. Though the budget and cycles of N2O on Earth are not yet fully resolved, accumulating information and recent modelling efforts enable a more complete evaluation and better definition of gaps in our knowledge.


Assuntos
Atmosfera/química , Óxido Nitroso/análise , Óxido Nitroso/química , Planeta Terra , Efeito Estufa , Óxido Nitroso/metabolismo , Oceanos e Mares , Solo
2.
Science ; 214(4516): 19-23, 1981 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17802551

RESUMO

In 1908, when the giant Tunguska meteor disintegrated in the earth's atmosphere over Siberia, it may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere. The photochemical aftereffects of the event have been simulated using a comprehensive model of atmospheric trace composition. Calculations indicate that up to 45 percent of the ozone in the Northern Hemisphere may have been depleted by Tunguska's nitric oxide cloud early in 1909 and large ozone reductions may have persisted until 1912. Measurements of atmospheric transparentiy by the Smithsonian Astrophysical Observatory for the years 1909 to 1911 show evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 +/- 15 percent. The coincidence in time between the observed ozone recovery and the Tunguska meteor fall indicates that the event may provide a test of current ozone depletion theories.

3.
Science ; 205(4401): 105-7, 1979 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17778918

RESUMO

Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.

4.
Science ; 205(4401): 116-9, 1979 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17778923

RESUMO

Additional plasma measurements in the vicinity of Venus are presented which show that (i) there are three distinct plasma electron populations-solar wind electrons, ionosheath electrons, and nightside ionosphere electrons; (ii) the plasma ion flow pattern in the ionosheath is consistent with deflected flow around a blunt obstacle; (iii) the plasma ion flow velocities near the downstream wake may, at times, be consistent with the deflection of plasma into the tail, closing the solar wind cavity downstream from Venus at a relatively close distance (within 5 Venus radii) to the planet; (iv) there is a separation between the inner boundary of the downstream ionosheath and the upper boundary of the nightside ionosphere; and (v) during the first 4.5 months in orbit the measured solar wind plasma speed continued to vary, showing a number of high-speed, but generally nonrecurrent, streams.

5.
Science ; 203(4382): 757-63, 1979 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17832987

RESUMO

Thermal plasma quantities measured by, the retarding potential analyzer (RPA) are, together with companion Pioneer Venus measurements, the first in situ measurements of the Venus ionosphere. High ionospheric ion and electron temperatures imply significant solar wind heating of the ionosphere. Comparison of the measured altitude profiles of the dominant ions with an initial modlel indicates that the ionosphere is close to diffusive equilibrium. The ionopause height was observed to vary from 400 to 1000 kilometers in early orbits. The ionospheric particle pressure at the ionopause is apparently balanced at a solar zenith angle of about 70 degrees by the magnetic field pressure with little contribution from energetic solar wind particles. The measured ratio of ionospheric scale height to ionopause radius is consistent with that inferred from previously measured bow shock positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...