Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Drug Policy ; 88: 103026, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246266

RESUMO

BACKGROUND: In the summer of 2019, e-cigarette, or vaping, product use-associated lung injury (EVALI) was detected in the United States. Multiple agencies reported illicit tetrahydrocannabinol (THC)-containing e-cigarette, or vaping, products containing vitamin E acetate (VEA) as a substance of concern. METHODS: As an expansion of the Utah Department of Health's response to EVALI, the Utah Public Health Laboratory and the Utah Department of Public Safety screened 170 products from 96 seizures between October 2018 and January 2020. Using Pearson's correlation coefficient, we analyzed the temporal correlation of national, and Utah specific case counts, and the percentage of seizures indicating VEA by month. RESULTS: The findings indicate strong and significant correlations between seizures indicating VEA and both the national (r = 0.70, p = 0.002) and Utah specific (r = 0.78, p < 0.001) case counts. CONCLUSION: These findings underscore that VEA should not be added to e-cigarettes, or vaping, products and the importance of collaboration with law enforcement when responding to outbreaks associated with illicit substances.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Acetatos , Dronabinol , Humanos , Aplicação da Lei , Saúde Pública , Estados Unidos/epidemiologia , Utah/epidemiologia , Vitamina E
3.
Forensic Sci Med Pathol ; 4(1): 33-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19291467

RESUMO

Knowledge of the biomechanical dynamics of blunt force trauma is indispensable for forensic reconstruction of a wounding event. In this study, we describe and interpret wound features on a synthetic skin model under defined laboratory conditions. To simulate skin and the sub-dermal tissues we used open-celled polyurethane sponge (foam), covered by a silicone layer. A drop tube device with three tube lengths (300, 400, and 500 mm), each secured to a weighted steel scaffold and into which a round, 5-kg Federal dumbbell of length 180 mm and diameter 8 cm was placed delivered blows of known impact. To calculate energy and velocity at impact the experimental set-up was replicated using rigid-body dynamics and motion simulation software. We soaked each foam square in 500 mL water, until fully saturated, immediately before placing it beneath the drop tube. We then recorded and classified both external and internal lacerations. The association between external wounding rates and the explanatory variables sponge type, sponge thickness, and height were investigated using Poisson regression. Tears (lacerations) of the silicone skin layer resembled linear lacerations seen in the clinical literature and resulted from only 48.6% of impacts. Poisson regression showed there was no significant difference between the rate of external wounding for different sponge types (P = 0.294) or different drop heights (P = 0.276). Most impacts produced "internal wounds" or subsurface cavitation (96%). There were four internal "wound" types; Y-shape (53%), linear (25%), stellate (16%), and double crescent (6%). The two-way interaction height by sponge type was statistically significant in the analysis of variance model (P = 0.035). The other two-way interactions; height by thickness and sponge type by thickness, were also bordering on statistical significance (P = 0.061 and P = 0.071, respectively). The observation that external wounds were present for less than half of impacts only, but that nearly all impacts resulted in internal wounds, might explain the observed haematoma formation and contusions so often associated with blunt-force injuries. Our study also confirms the key role of hydrodynamic pressure changes in the actual tearing of subcutaneous tissue. At the moment and site of impact, transferred kinetic energy creates a region of high pressure on the fluid inside the tissue. As a result of the incompressibility of the fluid, this will be displaced away from the impact at a rate that depends on the velocity (or kinetic energy) of impact and the permeability and stiffness of the polymeric foam and skin layer.


Assuntos
Modelos Biológicos , Pele/lesões , Pele/patologia , Ferimentos não Penetrantes/patologia , Análise de Variância , Fenômenos Biomecânicos , Patologia Legal , Humanos , Cinética , Lacerações/patologia , Poliuretanos , Tela Subcutânea/lesões , Tela Subcutânea/patologia , Ferimentos não Penetrantes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...