Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 4(2): 219-234, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32025607

RESUMO

Biliary atresia (BA) is a rare neonatal disease with unknown causes. Approximately 10% of BA cases develop in utero with other congenital defects that span a large spectrum of disease variations, including degeneration of the gall bladder and bile duct as well as malformation of the liver, intestines, and kidneys. Similar developmental alterations are manifested in a unique animal model, the sea lamprey (Petromyzon marinus), in which BA occurs naturally during metamorphosis. With the likelihood of conserved developmental mechanisms underlying organogenesis and degeneration, lamprey developmental BA may be a useful model to infer mechanisms underlying human embryonic BA. We reasoned that hepatobiliary transcriptomes regulate the transition between landmark stages of BA. Therefore, we examined sea lamprey hepatobiliary transcriptomes at four stages (M0, metamorphic stage 0 or larval stage, no BA; M2, metamorphic stage 2, onset of BA; M5, metamorphic stage 5, BA, and heightened hepatocyte proliferation and reorganization; and JV, juvenile, completion of BA) using messenger RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We found gene-expression patterns associated with the transition between these stages. In particular, transforming growth factor ß (TGF-ß), hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt, Wnt, and mitogen-activated protein kinase pathways were involved during biliary degeneration. Furthermore, disrupting the TGF-ß signaling pathway with antagonist or small interfering RNA treatments at the onset of BA delayed gall bladder and bile duct degeneration. Conclusion: Distinctive gene-expression patterns are associated with the degeneration of the biliary system during developmental BA. In addition, disrupting TGF-ß signaling pathway at the onset of BA delayed biliary degeneration.

2.
PLoS One ; 15(1): e0228104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995629

RESUMO

Insects face diverse biotic and abiotic stresses that can affect their survival. Many of these stressors impact cellular metabolism, often resulting in increased accumulation of reactive oxygen species (ROS). Consequently, insects will respond to these stressors by increasing antioxidant activity and increased production of heat shock proteins (HSPs). In this study, the effect of heat, cold, starvation, and parasitism by Habroacon hebetor wasps was examined in the carob moth, Ectomyelois ceratoniae, to determine which responses were common to different stresses. For all stressors, malondialdehyde levels increased, indicative of oxidative stress in the insects. The activity of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), increased with each stress, suggesting that these enzymes were serving a protective role for the insects. Heat (46°C for 100 min) and cold (-15°C for 30 min) treatments caused significant mortalities to all developmental stages, but pretreatments of moderate heat (37°C for 10 min) or cold (10°C for 10 min) induced thermotolerance and reduced the mortality rates when insects were subsequently exposed to lethal temperatures. Quantitative RT-PCR confirmed that heat and cold tolerance were associated with up-regulation of two HSPs, HSP70 and HSP90. Interestingly, HSP70 transcripts increased to a greater extent with cold treatment, while HSP90 transcripts increased more in response to high temperatures. RNA interference (RNAi)-mediated knockdown of either HSP70 or HSP90 transcripts was achieved by injecting larvae with dsRNA targeting each gene's transcripts, and resulted in a loss of acquired thermotolerance in insects subjected to the heat or cold pretreatments. These observations provide convincing evidence that both HSP70 and HSP90 are important mediators of the acquired thermotolerance. Starvation and parasitism by wasps caused differential expression of the HSP genes. In response to starvation, HSP90 transcripts increased to a greater extent than HSP70, while in contrast, HSP70 transcripts increased to a greater extent than those of HSP90 during the first 48 h of wasp parasitism. These results showed the differential induction of the two HSPs' transcripts with variable stresses. As well as, heat, cold, starvation, and parasitism induce oxidative stress, and antioxidant enzymes likely play an important role in reducing oxidative damage in E. ceratoniae.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Mariposas/enzimologia , Mariposas/genética , Inanição/genética , Temperatura , Adaptação Fisiológica/genética , Animais , Bioensaio , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Larva/genética , Estresse Oxidativo/genética , Filogenia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
BMC Dev Biol ; 15: 47, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627605

RESUMO

BACKGROUND: Biliary atresia (BA) is a human infant disease with inflammatory fibrous obstructions in the bile ducts and is the most common cause for pediatric liver transplantation. In contrast, the sea lamprey undergoes developmental BA with transient cholestasis and fibrosis during metamorphosis, but emerges as a fecund adult. Therefore, sea lamprey liver metamorphosis may serve as an etiological model for human BA and provide pivotal information for hepatobiliary transformation and possible therapeutics. RESULTS: We hypothesized that liver metamorphosis in sea lamprey is due to transcriptional reprogramming that dictates cellular remodeling during metamorphosis. We determined global gene expressions in liver at several metamorphic landmark stages by integrating mRNA-Seq and gene ontology analyses, and validated the results with real-time quantitative PCR, histological and immunohistochemical staining. These analyses revealed that gene expressions of protein folding chaperones, membrane transporters and extracellular matrices were altered and shifted during liver metamorphosis. HSP90, important in protein folding and invertebrate metamorphosis, was identified as a candidate key factor during liver metamorphosis in sea lamprey. Blocking HSP90 with geldanamycin facilitated liver metamorphosis and decreased the gene expressions of the rate limiting enzyme for cholesterol biosynthesis, HMGCoA reductase (hmgcr), and bile acid biosynthesis, cyp7a1. Injection of hsp90 siRNA for 4 days altered gene expressions of met, hmgcr, cyp27a1, and slc10a1. Bile acid concentrations were increased while bile duct and gall bladder degeneration was facilitated and synchronized after hsp90 siRNA injection. CONCLUSIONS: HSP90 appears to play crucial roles in hepatobiliary transformation during sea lamprey metamorphosis. Sea lamprey is a useful animal model to study postembryonic development and mechanisms for hsp90-induced hepatobiliary transformation.


Assuntos
Ductos Biliares Intra-Hepáticos/embriologia , Atresia Biliar/embriologia , Colestase/embriologia , Proteínas de Choque Térmico HSP90/genética , Metamorfose Biológica/fisiologia , Petromyzon/embriologia , Animais , Benzoquinonas/farmacologia , Ácidos e Sais Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Atresia Biliar/patologia , Colesterol 7-alfa-Hidroxilase/biossíntese , Colesterol 7-alfa-Hidroxilase/genética , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/metabolismo , Fibrose/embriologia , Vesícula Biliar/embriologia , Vesícula Biliar/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/biossíntese , Hidroximetilglutaril-CoA Redutases/genética , Lactamas Macrocíclicas/farmacologia , Fígado/embriologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Proteínas Proto-Oncogênicas c-met/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética , Simportadores/biossíntese
4.
Gen Comp Endocrinol ; 208: 116-25, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25218130

RESUMO

Lampreys diverged from the jawed vertebrate lineage approximately 500million years ago. Lampreys undergo sex differentiation much later than most other vertebrates, and ovarian differentiation occurs several years before testicular differentiation. The genetic basis of lamprey sex differentiation is of particular interest both because of the phylogenetic importance of lampreys and because of their unusual pattern of sex differentiation. As well, differences between parasitic and non-parasitic lampreys may first become evident at ovarian differentiation. However, nothing is known about the genetic basis of ovarian differentiation in lampreys. This study examined potential differences in gene expression before, during, and after ovarian differentiation in parasitic chestnut lamprey Ichthyomyzon castaneus and non-parasitic northern brook lamprey Ichthyomyzonfossor. Eight target genes (17ß-hydroxysteroid dehydrogenase, germ cell-less, estrogen receptor ß, insulin-like growth factor 1 receptor, daz-associated protein 1, cytochrome c oxidase subunit III, Wilms' tumour suppressor protein 1, and dehydrocholesterol reductase 7) were examined. Northern brook lamprey displayed higher expression of cytochrome c oxidase subunit III, whereas chestnut lamprey displayed higher expression of insulin-like growth factor 1 receptor; these genes may be involved in apoptosis and oocyte growth, respectively. Presumptive male larvae had higher expression of Wilms' tumour suppressor protein 1, which may be involved in the undifferentiated gonad and/or later testicular development. Differentiated females had higher expression of 17ß hydroxysteroid dehydrogenase and daz-associated protein 1, which may be involved in female development. This study is the first to identify genes that may be involved in ovarian differentiation and fecundity in lampreys.


Assuntos
Diferenciação Celular/genética , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento , Lampreias/genética , Lampreias/parasitologia , Estágios do Ciclo de Vida/genética , Ovário/citologia , Animais , Canadá , Feminino , Geografia , Lampreias/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Ovário/metabolismo , Especificidade da Espécie
5.
PLoS One ; 9(2): e88387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505485

RESUMO

The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.


Assuntos
Controle de Pragas/métodos , Petromyzon/genética , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/toxicidade , Animais , Feminino , Masculino , Petromyzon/embriologia
6.
J Insect Sci ; 13: 69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224468

RESUMO

RNA interference has already proven itself to be a highly versatile molecular biology tool for understanding gene function in a limited number of insect species, but its widespread use in other species will be dependent on the development of easier methods of double-stranded RNA (dsRNA) delivery. This study demonstrates that RNA interference can be induced in the mosquito Aedes aegypti L. (Diptera: Culicidae) simply by soaking larvae in a solution of dsRNA for two hours. The mRNA transcripts for ß-tubulin, chitin synthase-1 and -2, and heat shock protein 83 were reduced between 30 and 50% three days post-dsRNA treatment. The dsRNA was mixed with a visible dye to identify those individuals that fed on the dsRNA, and based on an absence of RNA interference in those individuals that contained no dye within their guts, the primary route of entry of dsRNA is likely through the gut epithelium. RNA interference was systemic in the insects, inducing measurable knock down of gene expression in tissues beyond the gut. Silencing of the ß-tubulin and chitin synthase-1 genes resulted in reduced growth and/or mortality of the larvae, demonstrating the utility of dsRNA as a potential mosquito larvicide. Silencing of chitin synthase-2 did not induce mortality in the larvae, and silencing of heat shock protein 83 only induced mortality in the insects if they were subsequently subjected to a heat stress. Drosophila melanogaster Meigen (Diptera: Drosophilidae) larvae were also soaked in dsRNA designed to specifically target either their own ß-tubulin gene, or that of A. aegypti, and significant mortality was only seen in larvae treated with dsRNA targeting their own gene, which suggests that dsRNA pesticides could be designed to be species-limited.


Assuntos
Aedes/metabolismo , Controle de Mosquitos/métodos , Interferência de RNA/efeitos dos fármacos , RNA de Cadeia Dupla/farmacologia , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Animais , Quitina Sintase/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , RNA de Cadeia Dupla/administração & dosagem , Tubulina (Proteína)/metabolismo
7.
Insect Mol Biol ; 21(1): 119-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22122783

RESUMO

Carbon dioxide (CO(2)) is an important long-range chemosensory cue used by blood-feeding female mosquitoes to find their hosts. The CO(2) receptor in Drosophila melanogaster was previously determined to be a heterodimer comprised of two gustatory receptor (Gr) proteins, DmGr21a and DmGr63a. In the mosquito Aedes aegypti, two putative orthologous genes, AaGr1 and AaGr3, were identified in the genome database, along with an apparent paralogue of AaGr1, AaGr2. In this study, RNA interference (RNAi)-mediated gene knockdown of either AaGr1 or AaGr3 resulted in a loss of CO(2) sensitivity in both male and female mosquitoes, suggesting that these two proteins, like the Drosophila orthologues, function as a heterodimer. RNAi-mediated knockdown of AaGr2 expression had no impact on CO(2) reception. All three Gr genes were expressed in the maxillary palps of both Ae. aegypti and the West Nile virus vector mosquito, Culex pipiens quinquefasciatus. Interestingly, expression of the two CO(2) receptor genes was not equivalent in the two sexes and the implications of differential sex expression of the CO(2) receptor in different species are discussed. The functional identification of the CO(2) receptor in a mosquito could prove invaluable in the strategic design of compounds that disrupt the mosquito's ability to find hosts.


Assuntos
Aedes/genética , Proteínas de Insetos/genética , Receptores de Superfície Celular/genética , Animais , Dióxido de Carbono/fisiologia , Feminino , Masculino , Interferência de RNA
8.
Insect Biochem Mol Biol ; 39(11): 824-32, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19815067

RESUMO

A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3' untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3' UTR of the gamma-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.


Assuntos
Insetos/efeitos dos fármacos , Insetos/genética , Inseticidas/farmacologia , Interferência de RNA , RNA de Cadeia Dupla/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Ingestão de Alimentos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/fisiologia , RNA de Cadeia Dupla/farmacologia , Especificidade da Espécie , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
9.
Fly (Austin) ; 2(5): 247-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18838871

RESUMO

With twelve Drosophila genomes now sequenced, there is a growing need to develop higher-throughput methods for identifying the functions of the many newly identified genes. Genetic transformation and RNA interference are two technologies that have been used extensively to facilitate gene-function studies in Drosophila melanogaster, to introduce genes or block the expression of endogenous genes, respectively. Both of these technologies typically require the delivery of nucleic acids into developing insect embryos, and virtually all studies to date have relied on microinjection as the DNA delivery method of choice. In this study, we describe the use of biolistics as a higher-throughput method of nucleic acid delivery. By bombarding dechorionated D. melanogaster embryos with 1 microm gold beads coated with P-element or piggyBac transformation vectors, we observed transformation frequencies (3-4%) that are comparable to those achieved using microinjection methods, but in only a fraction of the time required for the DNA delivery. Biolistic delivery of double-stranded RNA (dsRNA) specific to a beta-glucuronidase (gus) transgene resulted in a significant (71%) reduction in gus transcripts in embryos and the RNA interference (RNAi) persisted through two successive larval molts, albeit at reduced levels. DsRNAs specific to four essential genes were delivered to embryos and resulted in arrested development and phenotypes that closely match that of null mutations. These results suggest that biolistic delivery of dsRNA into embryos could be adapted for high throughput RNAi screens of early Drosophila developmental genes.


Assuntos
Drosophila melanogaster/genética , Interferência de RNA , Transformação Genética , Animais , Biolística/métodos , DNA/genética , Primers do DNA , Glucuronidase/genética , Microinjeções/métodos , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Transgenes
10.
Insect Biochem Mol Biol ; 34(2): 167-76, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14871613

RESUMO

Bactrocera tryoni is a serious pest of horticulture in eastern Australia. Here we review molecular data relevant to pest status and development of a transformation system for this species. The development of transformation vectors for non-drosophilid insects has opened the door to the possibility of improving the sterile insect technique (SIT), by genetically engineering factory strains of pest insects to produce male-only broods. Transposition assays indicate that all five of the vectors currently used for transformation in non-drosophilid species have the potential to be useful as transformation vectors in B. tryoni. Evidence of cross mobilization of hobo by an endogenous Homer element emphasises the necessity to understand the endogenous transposons within a species. The sex-specific doublesex and yolk protein genes have been characterized with a view to engineering a female-specific lethal gene or modifying gene expression through RNA interference (RNAi). Data are presented which indicate the potential of RNAi to modify the sex ratio of resultant broods. An understanding of how pest status is determined and maintained is being addressed through the characterization of genes of the circadian clock that enable the fly to adapt to environmental cues. Such an understanding will be useful in the future to the effective delivery of sophisticated pest control measures.


Assuntos
Controle Biológico de Vetores/métodos , Tephritidae/genética , Transformação Genética/genética , Animais , Elementos de DNA Transponíveis/genética , Genes Letais , Marcadores Genéticos , Vetores Genéticos/genética , Infertilidade/genética , Especificidade da Espécie , Transgenes
11.
Mol Biol Evol ; 19(12): 2101-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446802

RESUMO

A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silkworm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C. elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.


Assuntos
Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Transposases/genética , Animais , Sequência de Bases , Southern Blotting , Caenorhabditis elegans/genética , Clonagem Molecular , Primers do DNA , Moscas Domésticas/genética , Humanos , Modelos Moleculares , Filogenia , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...