Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 51(13): 7218-31, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22697407

RESUMO

In this work, magnetometry and high-frequency and -field electron paramagnetic resonance spectroscopy (HFEPR) have been employed in order to determine the spin Hamiltonian (SH) parameters of the non-Kramers, S = 1, pseudooctahedral trans-[Ni(II){(OPPh(2))(EPPh(2))N}(2)(sol)(2)] (E = S, Se; sol = DMF, THF) complexes. X-ray crystallographic studies on these compounds revealed a highly anisotropic NiO(4)E(2) coordination environment, as well as subtle structural differences, owing to the nature of the Ni(II)-coordinated solvent molecule or ligand E atoms. The effects of these structural characteristics on the magnetic properties of the complexes were investigated. The accurately HFEPR-determined SH zero-field-splitting (zfs) D and E parameters, along with the structural data, provided the basis for a systematic density functional theory (DFT) and multiconfigurational ab initio computational analysis, aimed at further elucidating the electronic structure of the complexes. DFT methods yielded only qualitatively useful data. However, already entry level ab initio methods yielded good results for the investigated magnetic properties, provided that the property calculations are taken beyond a second-order treatment of the spin-orbit coupling (SOC) interaction. This was achieved by quasi-degenerate perturbation theory, in conjunction with state-averaged complete active space self-consistent-field calculations. The accuracy in the calculated D parameters improves upon recovering dynamic correlation with multiconfigurational ab initio methods, such as the second-order N-electron valence perturbation theory NEVPT2, the difference dedicated configuration interaction, and the spectroscopy-oriented configuration interaction. The calculations showed that the magnitude of D (∼3-7 cm(-1)) in these complexes is mainly dominated by multiple SOC contributions, the origin of which was analyzed in detail. In addition, the observed largely rhombic regime (E/D = 0.16-0.33) is attributed to the highly distorted metal coordination sphere. Of special importance is the insight by this work on the zfs effects of Se coordination to Ni(II). Overall, a combined experimental and theoretical methodology is provided, as a means to probe the electronic structure of octahedral Ni(II) complexes.


Assuntos
Complexos de Coordenação/química , Magnetismo , Níquel/química , Teoria Quântica , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Magnetometria , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
2.
Inorg Chem ; 50(24): 12867-76, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22098459

RESUMO

Square planar complexes of the type Ni(L(1))(2), Ni(L(2))(2), Cu(L(1))(2), and Cu(L(2))(2), where L(1)H = 2-hydroxy-5-t-octylacetophenone oxime and L(2)H = 2-hydroxy-5-n-propylacetophenone oxime, have been prepared and characterized by single-crystal X-ray diffraction, cyclic voltammetry, UV/vis spectroscopy, field-effect-transistor measurements, density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, and, in the case of the paramagnetic species, electron paramagnetic resonance (EPR) and magnetic susceptibility. Variation of alkyl groups on the ligand from t-octyl to n-propyl enabled electronic isolation of the complexes in the crystal structures of M(L(1))(2) contrasting with π-stacking interactions for M(L(2))(2) (M = Ni, Cu). This was evidenced by a one-dimensional antiferromagnetic chain for Cu(L(2))(2) but ideal paramagnetic behavior for Cu(L(1))(2) down to 1.8 K. Despite isostructural single crystal structures for M(L(2))(2), thin-film X-ray diffraction and scanning electron microscopy (SEM) revealed different morphologies depending on the metal and the deposition method (vapor or solution). The Cu complexes displayed limited electronic interaction between the central metal and the delocalized ligands, with more mixing in the case of Ni(II), as shown by electrochemistry and UV/vis spectroscopy. The complexes M(L(2))(2) showed poor charge transport in a field-effect transistor (FET) device despite the ability to form π-stacking structures, and this provides design insights for metal complexes to be used in conductive thin-film devices.

3.
Inorg Chem ; 47(16): 7438-42, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18627140

RESUMO

An investigation of the magnetic properties of the cobalt(II) citrate cubane [C(NH 2) 3] 8{Co 4(cit) 4}.4H 2O reveals that the cluster is a new cobalt(II) single-molecule magnet, with an energy barrier to reorientation of the magnetization, Delta E/ k B = 21 K, and tau 0 = 8 x 10 (-7) s. The compound displays distinct, frequency-dependent peaks in the out-of-phase (chi'') component of the ac magnetic susceptibility and magnetization versus field hysteresis loops that are temperature and sweep rate dependent. The hysteresis loops collapse at zero field due to very fast quantum tunneling of the magnetization (QTM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...