Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(24): e2307397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650173

RESUMO

Li-rich Mn-based layered oxides (LLO) hold great promise as cathode materials for lithium-ion batteries (LIBs) due to their unique oxygen redox (OR) chemistry, which enables additional capacity. However, the LLOs face challenges related to the instability of their OR process due to the weak transition metal (TM)-oxygen bond, leading to oxygen loss and irreversible phase transition that results in severe capacity and voltage decay. Herein, a synergistic electronic regulation strategy of surface and interior structures to enhance oxygen stability is proposed. In the interior of the materials, the local electrons around TM and O atoms may be delocalized by surrounding Mo atoms, facilitating the formation of stronger TM─O bonds at high voltages. Besides, on the surface, the highly reactive O atoms with lone pairs of electrons are passivated by additional TM atoms, which provides a more stable TM─O framework. Hence, this strategy stabilizes the oxygen and hinders TM migration, which enhances the reversibility in structural evolution, leading to increased capacity and voltage retention. This work presents an efficient approach to enhance the performance of LLOs through surface-to-interior electronic structure modulation, while also contributing to a deeper understanding of their redox reaction.

2.
ChemSusChem ; 17(11): e202400084, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38519865

RESUMO

Despite large theoretical energy densities, metal-sulfide electrodes for energy storage systems face several limitations that impact the practical realization. Here, we present the solution-processable, room temperature (RT) synthesis, local structures, and application of a sulfur-rich Mo3S13 chalcogel as a conversion-based electrode for lithium-sulfide batteries (LiSBs). The structure of the amorphous Mo3S13 chalcogel is derived through operando Raman spectroscopy, synchrotron X-ray pair distribution function (PDF), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) analysis, along with ab initio molecular dynamics (AIMD) simulations. A key feature of the three-dimensional (3D) network is the connection of Mo3S13 units through S-S bonds. Li/Mo3S13 half-cells deliver initial capacity of 1013 mAh g-1 during the first discharge. After the activation cycles, the capacity stabilizes and maintains 312 mAh g-1 at a C/3 rate after 140 cycles, demonstrating sustained performance over subsequent cycling. Such high-capacity and stability are attributed to the high density of (poly)sulfide bonds and the stable Mo-S coordination in Mo3S13 chalcogel. These findings showcase the potential of Mo3S13 chalcogels as metal-sulfide electrode materials for LiSBs.

3.
Adv Mater ; : e2306533, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730211

RESUMO

Advanced high-energy-density sodium-ion batteries (SIBs) are inseparable from cathode materials with high specific capacities. Layered manganese-rich oxides (Nax MnO2 , 0.6 ≤ x ≤1) are promising cathode materials owing to their ease of intercalation and extraction of a considerable amount of sodium ions. However, lattice interactions, especially electrostatic repulsive forces and anisotropic stresses, are usually caused by deep desodiatin/sodiation process, resulting in intragranular cracks and capacity degradation in SIBs. Here, boron ions are introduced into the layered structure to build up B─O─Mn bonds. The regulated electronic structure in Na0.637 B0.038 MnO2 (B-NMO) materials inhibits the deformation of MnO6 octahedra, which finally achieves a gentle structural transition during the deep sodiation process. B-NMO electrode exhibits a high capacity (141 mAh g-1 ) at 1 C with a capacity retention of 81% after 100 cycles. Therefore, anchoring boron to manganese-rich materials inhibits the detrimental structural evolution of deep sodiation and can be used to obtain excellent cathode materials for SIBs.

4.
J Synchrotron Radiat ; 30(Pt 4): 855, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37233736

RESUMO

The name of an author in the article by Weng et al. (2023) [J. Synchrotron Rad. 30, 546-554] is corrected.

5.
J Synchrotron Radiat ; 30(Pt 3): 546-554, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897395

RESUMO

Flat-field calibration of X-ray area detectors is a challenge due to the inability to generate an X-ray flat-field at the selected photon energy the beamline operates at, which has a strong influence on the measurement behavior of the detector. A method is presented in which a simulated flat-field correction is calculated without flat-field measurements. Instead, a series of quick scattering measurements from an amorphous scatterer is used to calculate a flat-field response. The ability to rapidly obtain a flat-field response allows for recalibration of an X-ray detector as needed without significant expenditure of either time or effort. Area detectors on the beamlines used, such as the Pilatus 2M CdTe, PE XRD1621 and Varex XRD 4343CT, were found to have detector responses that drift slightly over timescales of several weeks or after exposure to high photon flux, suggesting the need to more frequently recalibrate with a new flat-field correction map.

6.
Adv Sci (Weinh) ; 9(16): e2200498, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347886

RESUMO

Layered transition-metal (TM) oxides are ideal hosts for Li+ charge carriers largely due to the occurrence of oxygen charge compensation that stabilizes the layered structure at high voltage. Hence, enabling charge compensation in sodium layered oxides is a fascinating task for extending the cycle life of sodium-ion batteries. Herein a Ti/Mg co-doping strategy for a model P2-Na2/3 Ni1/3 Mn2/3 O2 cathode material is put forward to activate charge compensation through highly hybridized O2 p TM3 d covalent bonds. In this way, the interlayer OO electrostatic repulsion is weakened upon deeply charging, which strongly affects the systematic total energy that transforms the striking P2-O2 interlayer contraction into a moderate solid-solution-type evolution. Accordingly, the cycling stability of the codoped cathode material is improved superiorly over the pristine sample. This study starts a perspective way of optimizing the sodium layered cathodes by rational structural design coupling electrochemical reactions, which can be extended to widespread battery researches.

7.
Nano Lett ; 21(23): 9997-10005, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813330

RESUMO

The capacity degredation in layered Ni-rich LiNixCoyMnzO2 (x ≥ 0.8) cathode largely originated from drastic surface reactions and intergranular cracks in polycrystalline particles. Herein, we report a highly stable single-crystal LiNi0.83Co0.12Mn0.05O2 cathode material, which can deliver a high specific capacity (∼209 mAh g-1 at 0.1 C, 2.8-4.3 V) and meanwhile display excellent cycling stability (>96% retention for 100 cycles and >93% for 200 cycles). By a combination of in situ X-ray diffraction and in situ pair distribution function analysis, an intermediate monoclinic distortion and irregular H3 stack are revealed in the single crystals upon charging-discharging processes. These structural changes might be driven by unique Li-intercalation kinetics in single crystals, which enables an additional strain buffer to reduce the cracks and thereby ensure the high cycling stability.

8.
J Am Chem Soc ; 143(11): 4213-4223, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719436

RESUMO

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).

9.
Nat Mater ; 20(6): 841-850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33479526

RESUMO

Metal fluorides, promising lithium-ion battery cathode materials, have been classified as conversion materials due to the reconstructive phase transitions widely presumed to occur upon lithiation. We challenge this view by studying FeF3 using X-ray total scattering and electron diffraction techniques that measure structure over multiple length scales coupled with density functional theory calculations, and by revisiting prior experimental studies of FeF2 and CuF2. Metal fluoride lithiation is instead dominated by diffusion-controlled displacement mechanisms, and a clear topological relationship between the metal fluoride F- sublattices and that of LiF is established. Initial lithiation of FeF3 forms FeF2 on the particle's surface, along with a cation-ordered and stacking-disordered phase, A-LixFeyF3, which is structurally related to α-/ß-LiMn2+Fe3+F6 and which topotactically transforms to B- and then C-LixFeyF3, before forming LiF and Fe. Lithiation of FeF2 and CuF2 results in a buffer phase between FeF2/CuF2 and LiF. The resulting principles will aid future developments of a wider range of isomorphic metal fluorides.

10.
J Am Chem Soc ; 142(15): 7001-7011, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32202112

RESUMO

Substituted Li-layered transition-metal oxide (LTMO) electrodes such as LixNiyMnzCo1-y-zO2 (NMC) and LixNiyCo1-y-zAlzO2 (NCA) show reduced first cycle Coulombic efficiency (90-87% under standard cycling conditions) in comparison with the archetypal LixCoO2 (LCO; ∼98% efficiency). Focusing on LixNi0.8Co0.15Al0.05O2 as a model compound, we use operando synchrotron X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopy to demonstrate that the apparent first-cycle capacity loss is a kinetic effect linked to limited Li mobility at x > 0.88, with near full capacity recovered during a potentiostatic hold following the galvanostatic charge-discharge cycle. This kinetic capacity loss, unlike many capacity losses in LTMOs, is independent of the cutoff voltage during delithiation and it is a reversible process. The kinetic limitation manifests not only as the kinetic capacity loss during discharge but as a subtle bimodal compositional distribution early in charge and, also, a dramatic increase of the charge-discharge voltage hysteresis at x > 0.88. 7Li NMR measurements indicate that the kinetic limitation reflects limited Li transport at x > 0.86. Electrochemical measurements on a wider range of LTMOs including Lix(Ni,Fe)yCo1-yO2 suggest that 5% substitution is sufficient to induce the kinetic limitation and that the effect is not limited to Ni substitution. We outline how, in addition to a reduction in the number of Li vacancies and shrinkage of the Li-layer size, the intrinsic charge storage mechanism (two-phase vs solid-solution) and localization of charge give rise to additional kinetic barriers in NCA and nonmetallic LTMOs in general.

11.
Phys Chem Chem Phys ; 21(22): 11740-11747, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31114817

RESUMO

To control the size and structure of supported Pt catalysts, the influence of additional metal particles and the effect of supports were elucidated during the cracking reaction of n-dodecane under supercritical reaction conditions. The dynamical changes in nanocatalysts and catalytic activity are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed heating, in situ Small Angle X-ray Scattering (SAXS) and X-ray Absorption Near Edge Structure (XANES). In situ SAXS results indicate that the stability of the catalysts increases with Sn concentration. In situ XANES analysis reveals that the degree of oxidation and the electronic states of catalysts are dependent on the amount of Sn. Carbonaceous deposits over spent catalysts were characterized by Raman spectroscopy, indicating that the highest Sn loading inhibits the formation of disordered graphitic lattices, which leads to an increased catalytic activity. SiO2, γ-Al2O3 and Mg(Al)Ox were employed as supports to investigate the support effect on the stability of Pt catalysts. In situ SAXS and XANES results clearly show the improved stability of catalysts on γ-Al2O3 and Mg(Al)Ox supports compared to Pt catalysts on SiO2 and the electronic states of catalysts are strongly influenced by support materials.

12.
Nature ; 559(7715): 556-563, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046074

RESUMO

The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery.

13.
J Am Chem Soc ; 139(21): 7273-7286, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28471174

RESUMO

The alloying mechanism of high-capacity tin anodes for sodium-ion batteries is investigated using a combined theoretical and experimental approach. Ab initio random structure searching (AIRSS) and high-throughput screening using a species-swap method provide insights into a range of possible sodium-tin structures. These structures are linked to experiments using both average and local structure probes in the form of operando pair distribution function analysis, X-ray diffraction, and 23Na solid-state nuclear magnetic resonance (ssNMR), along with ex situ 119Sn ssNMR. Through this approach, we propose structures for the previously unidentified crystalline and amorphous intermediates. The first electrochemical process of sodium insertion into tin results in the conversion of crystalline tin into a layered structure consisting of mixed Na/Sn occupancy sites intercalated between planar hexagonal layers of Sn atoms (approximate stoichiometry NaSn3). Following this, NaSn2, which is predicted to be thermodynamically stable by AIRSS, forms; this contains hexagonal layers closely related to NaSn3, but has no tin atoms between the layers. NaSn2 is broken down into an amorphous phase of approximate composition Na1.2Sn. Reverse Monte Carlo refinements of an ab initio molecular dynamics model of this phase show that the predominant tin connectivity is chains. Further reaction with sodium results in the formation of structures containing Sn-Sn dumbbells, which interconvert through a solid-solution mechanism. These structures are based upon Na5-xSn2, with increasing occupancy of one of its sodium sites commensurate with the amount of sodium added. ssNMR results indicate that the final product, Na15Sn4, can store additional sodium atoms as an off-stoichiometry compound (Na15+xSn4) in a manner similar to Li15Si4.

14.
Nano Lett ; 17(3): 1696-1702, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28221809

RESUMO

Virtually all intercalation compounds exhibit significant changes in unit cell volume as the working ion concentration varies. NaxFePO4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high-strain systems as it exhibits one of the largest discontinuous volume changes (∼17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, amorphous phase forms to buffer the large lattice mismatch between primary phases. The amorphous phase has short-range order over ∼1nm domains that is characterized by a and b parameters matching one crystalline end-member phase and a c parameter matching the other, but is not detectable by powder diffraction alone. We suggest that this strain-accommodation mechanism may generally apply to systems with large transformation strains.

15.
Nano Lett ; 16(4): 2375-80, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26930492

RESUMO

Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electrochemical cycling, accompanied by significant transformation strains. Despite ∼30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMnyFe1-yPO4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of ∼50 nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries.

16.
J Am Chem Soc ; 138(7): 2352-65, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26824406

RESUMO

Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.

17.
J Am Chem Soc ; 138(1): 328-37, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26636472

RESUMO

Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(µ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 71(Pt 6): 722-6, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26634729

RESUMO

Understanding how intercalation materials change during electrochemical operation is paramount to optimizing their behaviour and function and in situ characterization methods allow us to observe these changes without sample destruction. Here we first report the improved intercalation properties of bronze phase vanadium dioxide VO2 (B) prepared by a microwave-assisted route which exhibits a larger electrochemical capacity (232 mAh g(-1)) compared with VO2 (B) prepared by a solvothermal route (197 mAh g(-1)). These electrochemical differences have also been followed using in situ X-ray absorption spectroscopy allowing us to follow oxidation state changes as they occur during battery operation.

20.
Science ; 344(6191): 1252817, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970091

RESUMO

The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...