Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
RSC Adv ; 14(13): 8740-8751, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495981

RESUMO

A TiO2/TiOF2 composite has been synthesized through a hydrothermal method and characterized using X-ray diffraction, Raman spectroscopy, UV-vis diffuse reflectance, SEM-EDX, TEM, and N2 adsorption-desorption isotherms. The percentage of exposed facet [001] and the composition of TiO2/TiOF2 in the composite were controlled by adjusting the amount of HF and hydrothermal temperature synthesis. Three crucial factors in the photocatalytic conversion of methane to methanol, including the photocatalyst, electron scavenger (FeCl2), and H2O2 were evaluated using a statistical approach. All factors were found to have a significant impact on the photocatalytic reaction and exhibited a synergistic effect that enhanced methanol production. The highest methanol yield achieved was 0.7257 µmole h-1 gcat-1. The presence of exposed [001] and fluorine (F) in the catalyst is believed to enhance the adsorption of reactant molecules and provide a more oxidative site. The Fenton cycle reaction between FeCl2 and H2O2 was attributed to reducing recombination and extending the charge carrier lifetime. Incorporating Ag into the TiO2/TiOF2 catalyst results in a significant 2.2-fold enhancement in methanol yield. Additionally, the crucial involvement of hydroxyl radicals in the comprehensive reaction mechanism highlights their importance in influencing the process of photocatalytic methane-to-methanol conversion.

2.
Emerg Infect Dis ; 30(3): 586-590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407163

RESUMO

Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b viruses were isolated from domestic ducks in South Kalimantan, Indonesia, during April 2022. The viruses were genetically similar to those detected in East Asia during 2021-2022. Molecular surveillance of wild birds is needed to detect potential pandemic threats from avian influenza virus.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Patos , Indonésia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia
3.
Virus Genes ; 60(2): 105-116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244104

RESUMO

During the Covid-19 pandemic, the resurgence of SARS-CoV-2 was due to the development of novel variants of concern (VOC). Thus, genomic surveillance is essential to monitor continuing evolution of SARS-CoV-2 and to track the emergence of novel variants. In this study, we performed phylogenetic, mutation, and selection pressure analyses of the Spike, nsp12, nsp3, and nsp5 genes of SARS-CoV-2 isolates circulating in Yogyakarta and Central Java provinces, Indonesia from May 2021 to February 2022. Various bioinformatics tools were employed to investigate the evolutionary dynamics of distinct SARS-CoV-2 isolates. During the study period, 213 and 139 isolates of Omicron and Delta variants were identified, respectively. Particularly in the Spike gene, mutations were significantly more abundant in Omicron than in Delta variants. Consistently, in all of four genes studied, the substitution rates of Omicron were higher than that of Delta variants, especially in the Spike and nsp12 genes. In addition, selective pressure analysis revealed several sites that were positively selected in particular genes, implying that these sites were functionally essential for virus evolution. In conclusion, our study demonstrated a distinct evolutionary pattern of SARS-CoV-2 variants circulating in Yogyakarta and Central Java provinces, Indonesia.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Indonésia/epidemiologia , RNA Polimerase Dependente de RNA , Pandemias , Filogenia , Mutação , Análise de Sequência , Peptídeo Hidrolases , Glicoproteína da Espícula de Coronavírus/genética
4.
BMC Med Genomics ; 16(1): 205, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644458

RESUMO

BACKGROUND: The SARS-CoV-2 Omicron variant has replaced the previously dominant Delta variant because of high transmissibility. However, studies on the impact of the Omicron variant on the severity of COVID-19 are still limited in developing countries. Our study aimed to determine the prognostic factors for the outcomes of patients infected with SARS-CoV-2 Omicron and Delta variants, including age, sex, comorbidities, and smoking. METHODS: In this retrospective cross-sectional study, we involved 352 patients with COVID-19 from Yogyakarta and Central Java provinces, Indonesia, from May 2021 to February 2022, consisting of 164 males and 188 females. We included all patients with the PCR's Ct value of less than 30 for further whole-genome sequencing. RESULTS: Ct value and mean age of COVID-19 patients were not significantly different between both groups (p = 0.146 and 0.273, respectively). Patients infected with Omicron (n = 139) and Delta (n = 213) variants showed similar hospitalization (p = 0.396) and mortality rates (p = 0.565). Multivariate analysis of both groups showed that older age (≥ 65 years) had a higher risk for hospitalization (OR = 3.86 [95% CI = 1.29-11.5]; p = 0.015) and fatalities (OR = 3.91 [95% CI = 1.35-11.42]; p = 0.012). In both groups, patients with cardiovascular disease had a higher risk for hospitalization (OR = 5.36 [95% CI = 1.08-26.52]; p = 0.039), whereas patients with diabetes revealed a higher risk for fatalities (OR = 9.47 [95% CI = 3.23-27.01]; p = < 0.001). CONCLUSIONS: Our study shows that patients infected with Omicron and Delta variants reveal similar clinical outcomes, including hospitalization and mortality. Our findings further confirm that older age, cardiovascular disease, and diabetes are substantial prognostic factors for the outcomes of COVID-19 patients. Our findings imply that COVID-19 patients with older age, cardiovascular disease, or diabetes should be treated comprehensively and cautiously to prevent further morbidity and mortality. Furthermore, incomplete data on vaccination status hampered us from analyzing further its impact on hospitalization and mortality in our patients.


Assuntos
COVID-19 , Doenças Cardiovasculares , Feminino , Masculino , Humanos , SARS-CoV-2 , Estudos Transversais , Prognóstico , Estudos Retrospectivos
5.
Microbiol Resour Announc ; 12(2): e0108122, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36622181

RESUMO

During 2022, outbreaks of foot-and-mouth disease (FMD) were reported across the islands of Indonesia, a country that had previously maintained an FMD-free (without vaccination) status since 1990. This report describes the near-complete genome sequence of a representative FMD virus collected from these cases belonging to the O/ME-SA/Ind-2001e lineage.

6.
ACS Omega ; 7(48): 44047-44056, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506184

RESUMO

The biosilica shell of marine diatoms has emerged as a unique matrix for photocatalysis, owing to its sophisticated architecture with hierarchical nanopores and large surface area. Although the deposition of titania nanoparticles on diatom biosilica has been demonstrated previously, their photocatalytic activity has been tested only for degradation of pure compounds, such as dyes, nitrogen oxide, and aldehydes. The efficiency of such photocatalysts for degradation of mixtures, for instance, industrial wastewaters, is yet to be investigated. Furthermore, reports on the lattice structures and orientation of nanotitania crystals on biosilica are considerably limited, especially for the underexplored tropical marine diatoms. Here, we report an extensive characterization of titania-loaded biosilica from the tropical Cyclotella striata diatom, starting from freshly grown cell cultures to photodegradation of wastewaters, namely, the palm oil mill effluent (POME). As Indonesia is the largest palm oil producer in the world, photocatalytic technology could serve as a sustainable alternative for local treatment of POME. In this study, we achieved a 54% loading of titania on C. striata TBI strain biosilica, as corroborated by XRF analyses, which was considerably high compared to previous studies. Through visualization using HR-TEM, supported by SAED and XRD analyses, nanocrystal TiO2 appeared to be trapped in an anatase phase with polycrystalline characteristics and distinct crystallographic orientations. Importantly, the presence of C. striata biosilica lowered the band gap of titania from 3.41 eV to around 3.2 eV upon deposition, enabling photodegradation of POME using a broad-range xenon lamp as the light source, mimicking the sunlight. Kinetic analyses revealed that POME degradation using the photocatalysts followed quasi-first-order kinetics, in which the highest titania content resulted in the highest photocatalytic activity (i.e., up to 47% decrease in chemical oxygen demand) and exhibited good photostability throughout the reaction cycles. Unraveling the structure and photoactivity of titania-biosilica catalysts allows transforming marine diatoms into functional materials for wastewater photodegradation.

7.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080265

RESUMO

Methane is one of the promising alternatives to non-renewable petroleum resources since it can be transformed into added-value hydrocarbon feedstocks through suitable reactions. The conversion of methane to methanol with a higher chemical value has recently attracted much attention. The selective oxidation of methane to methanol is often considered a "holy grail" reaction in catalysis. However, methanol production through the thermal catalytic process is thermodynamically and economically unfavorable due to its high energy consumption, low catalyst stability, and complex reactor maintenance. Photocatalytic technology offers great potential to carry out unfavorable reactions under mild conditions. Many in-depth studies have been carried out on the photocatalytic conversion of methane to methanol. This review will comprehensively provide recent progress in the photocatalytic oxidation of methane to methanol based on materials and engineering perspectives. Several aspects are considered, such as the type of semiconductor-based photocatalyst (tungsten, titania, zinc, etc.), structure modification of photocatalyst (doping, heterojunction, surface modification, crystal facet re-arrangement, and electron scavenger), factors affecting the reaction process (physiochemical characteristic of photocatalyst, operational condition, and reactor configuration), and briefly proposed reaction mechanism. Analysis of existing challenges and recommendations for the future development of photocatalytic technology for methane to methanol conversion is also highlighted.

8.
Genes (Basel) ; 13(8)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893066

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a newly emerging virus well known as the major cause of the worldwide pandemic due to Coronavirus Disease 2019 (COVID-19). Major breakthroughs in the Next Generation Sequencing (NGS) field were elucidated following the first release of a full-length SARS-CoV-2 genome on the 10 January 2020, with the hope of turning the table against the worsening pandemic situation. Previous studies in respiratory virus characterization require mapping of raw sequences to the human genome in the downstream bioinformatics pipeline as part of metagenomic principles. Illumina, as the major player in the NGS arena, took action by releasing guidelines for improved enrichment kits called the Respiratory Virus Oligo Panel (RVOP) based on a hybridization capture method capable of capturing targeted respiratory viruses, including SARS-CoV-2; therefore, allowing a direct map of raw sequences data to SARS-CoV-2 genome in downstream bioinformatics pipeline. Consequently, two bioinformatics pipelines emerged with no previous studies benchmarking the pipelines. This study focuses on gaining insight and understanding of target enrichment workflow by Illumina through the utilization of different bioinformatics pipelines named as 'Fast Pipeline' and 'Normal Pipeline' to SARS-CoV-2 strains isolated from Yogyakarta and Central Java, Indonesia. Overall, both pipelines work well in the characterization of SARS-CoV-2 samples, including in the identification of major studied nucleotide substitutions and amino acid mutations. A higher number of reads mapped to the SARS-CoV-2 genome in Fast Pipeline and merely were discovered as a contributing factor in a higher number of coverage depth and identified variations (SNPs, insertion, and deletion). Fast Pipeline ultimately works well in a situation where time is a critical factor. On the other hand, Normal Pipeline would require a longer time as it mapped reads to the human genome. Certain limitations were identified in terms of pipeline algorithm, whereas it is highly recommended in future studies to design a pipeline in an integrated framework, for instance, by using NextFlow, a workflow framework to combine all scripts into one fully integrated pipeline.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/virologia , Biologia Computacional/métodos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , SARS-CoV-2/genética
9.
Front Med (Lausanne) ; 8: 780611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957154

RESUMO

Background: Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) has been responsible for the current increase in Coronavirus disease 2019 (COVID-19) infectivity rate worldwide. We compared the impact of the Delta variant and non-Delta variant on the COVID-19 outcomes in patients from Yogyakarta and Central Java provinces, Indonesia. Methods: In this cross-sectional study, we ascertained 161 patients, 69 with the Delta variant and 92 with the non-Delta variant. The Illumina MiSeq next-generation sequencer was used to perform the whole-genome sequences of SARS-CoV-2. Results: The mean age of patients with the Delta variant and the non-Delta variant was 27.3 ± 20.0 and 43.0 ± 20.9 (p = 3 × 10-6). The patients with Delta variant consisted of 23 males and 46 females, while the patients with the non-Delta variant involved 56 males and 36 females (p = 0.001). The Ct value of the Delta variant (18.4 ± 2.9) was significantly lower than that of the non-Delta variant (19.5 ± 3.8) (p = 0.043). There was no significant difference in the hospitalization and mortality of patients with Delta and non-Delta variants (p = 0.80 and 0.29, respectively). None of the prognostic factors were associated with the hospitalization, except diabetes with an OR of 3.6 (95% CI = 1.02-12.5; p = 0.036). Moreover, the patients with the following factors have been associated with higher mortality rate than the patients without the factors: age ≥65 years, obesity, diabetes, hypertension, and cardiovascular disease with the OR of 11 (95% CI = 3.4-36; p = 8 × 10-5), 27 (95% CI = 6.1-118; p = 1 × 10-5), 15.6 (95% CI = 5.3-46; p = 6 × 10-7), 12 (95% CI = 4-35.3; p = 1.2 × 10-5), and 6.8 (95% CI = 2.1-22.1; p = 0.003), respectively. Multivariate analysis showed that age ≥65 years, obesity, diabetes, and hypertension were the strong prognostic factors for the mortality of COVID-19 patients with the OR of 3.6 (95% CI = 0.58-21.9; p = 0.028), 16.6 (95% CI = 2.5-107.1; p = 0.003), 5.5 (95% CI = 1.3-23.7; p = 0.021), and 5.8 (95% CI = 1.02-32.8; p = 0.047), respectively. Conclusions: We show that the patients infected by the SARS-CoV-2 Delta variant have a lower Ct value than the patients infected by the non-Delta variant, implying that the Delta variant has a higher viral load, which might cause a more transmissible virus among humans. However, the Delta variant does not affect the COVID-19 outcomes in our patients. Our study also confirms that older age and comorbidity increase the mortality rate of patients with COVID-19.

10.
Sci Rep ; 11(1): 21352, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725366

RESUMO

The outcome of SARS-CoV-2 infection is determined by multiple factors, including the viral, host genetics, age, and comorbidities. This study investigated the association between prognostic factors and disease outcomes of patients infected by SARS-CoV-2 with multiple S protein mutations. Fifty-one COVID-19 patients were recruited in this study. Whole-genome sequencing of 170 full-genomes of SARS-CoV-2 was conducted with the Illumina MiSeq sequencer. Most patients (47%) had mild symptoms of COVID-19 followed by moderate (19.6%), no symptoms (13.7%), severe (4%), and critical (2%). Mortality was found in 13.7% of the COVID-19 patients. There was a significant difference between the age of hospitalized patients (53.4 ± 18 years) and the age of non-hospitalized patients (34.6 ± 19) (p = 0.001). The patients' hospitalization was strongly associated with hypertension, diabetes, and anticoagulant and were strongly significant with the OR of 17 (95% CI 2-144; p = 0.001), 4.47 (95% CI 1.07-18.58; p = 0.039), and 27.97 (95% CI 1.54-507.13; p = 0.02), respectively; while the patients' mortality was significantly correlated with patients' age, anticoagulant, steroid, and diabetes, with OR of 8.44 (95% CI 1.5-47.49; p = 0.016), 46.8 (95% CI 4.63-472.77; p = 0.001), 15.75 (95% CI 2-123.86; p = 0.009), and 8.5 (95% CI 1.43-50.66; p = 0.019), respectively. This study found the clade: L (2%), GH (84.3%), GR (11.7%), and O (2%). Besides the D614G mutation, we found L5F (18.8%), V213A (18.8%), and S689R (8.3%). No significant association between multiple S protein mutations and the patients' hospitalization or mortality. Multivariate analysis revealed that hypertension and anticoagulant were the significant factors influencing the hospitalization and mortality of patients with COVID-19 with an OR of 17.06 (95% CI 2.02-144.36; p = 0.009) and 46.8 (95% CI 4.63-472.77; p = 0.001), respectively. Moreover, the multiple S protein mutations almost reached a strong association with patients' hospitalization (p = 0.07). We concluded that hypertension and anticoagulant therapy have a significant impact on COVID-19 outcomes. This study also suggests that multiple S protein mutations may impact the COVID-19 outcomes. This further emphasized the significance of monitoring SARS-CoV-2 variants through genomic surveillance, particularly those that may impact the COVID-19 outcomes.


Assuntos
COVID-19/mortalidade , Mutação , SARS-CoV-2/genética , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Comorbidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hospitalização , Humanos , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Sequenciamento Completo do Genoma/métodos , Adulto Jovem
11.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684806

RESUMO

Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil industry, needs to be handled properly to minimize the harmful impact on the surrounding environment. Photocatalytic technology is one of the advanced technologies that can be developed due to its low operating costs, as well as being sustainable, renewable, and environmentally friendly. This paper reports on the photocatalytic degradation of palm oil mill effluent (POME) using a BiVO4 photocatalyst under UV-visible light irradiation. BiVO4 photocatalysts were synthesized via sol-gel method and their physical and chemical properties were characterized using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis using the BET method, Raman spectroscopy, electron paramagnetic resonance (EPR), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of calcination temperature on the properties and photocatalytic performance for POME degradation using BiVO4 photocatalyst was also studied. XRD characterization data show a phase transformation of BiVO4 from tetragonal to monoclinic phase at a temperature of 450 °C (BV-450). The defect site comprising of vanadium vacancy (Vv) was generated through calcination under air and maxima at the BV-450 sample and proposed as the origin of the highest reaction rate constant (k) of photocatalytic POME removal among various calcination temperature treatments with a k value of 1.04 × 10-3 min-1. These findings provide design guidelines to develop efficient BiVO4-based photocatalyst through defect engineering for potential scalable photocatalytic organic pollutant degradation.


Assuntos
Bismuto , Resíduos Industriais/análise , Óleo de Palmeira/isolamento & purificação , Fotólise , Vanadatos , Poluentes Químicos da Água/análise , Bismuto/química , Catálise , Cristalografia por Raios X , Microscopia Eletrônica de Varredura , Análise Espectral Raman , Vanadatos/síntese química , Vanadatos/química , Gerenciamento de Resíduos/métodos
12.
J Adv Vet Anim Res ; 8(2): 346-354, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34395607

RESUMO

OBJECTIVE: A phylogenetic study was carried out on the avian influenza virus (AIV) isolated from a disease outbreak in Sidenreng Rappang Regency, South Sulawesi, Indonesia, in 2018. MATERIAL AND METHODS: Oropharyngeal swabs and organ samples were obtained from ducks that showed clinical symptoms: torticollis, fascial edema, neurological disorders, the corneas appear cloudy, and death occurs less than 1 day after symptoms appear. In this study, isolate A/duck/Sidenreng Rappang/07180110-11/2018 from duck was sequenced and characterized. RESULTS: It was found that each gene segment of the virus has the highest nucleotide homology to the Indonesian highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.2.1c. Multiple alignments of the sample Hemagglutinin (HA) gene with the avian influenza references virus showed that the pattern of amino acid arrangement in the cleavage site PQRERRRK-RGLF is the characteristic of the HPAI virus. In addition, the HA gene contained Q222 (glutamine) and G224 (glycine), signifying a high affinity to avian receptor binding specificity (SA α2,3 Gal). Furthermore, there was no genetic reassortment of this virus based on the phylogenetic analysis of HA, NA, PB1, PB2, PA, NP, M, and NS genes. CONCLUSION: The HPAI H5N1 clade 2.3.2.1c virus was identified in duck farms in South Sulawesi, Indonesia.

13.
Materials (Basel) ; 14(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073400

RESUMO

The palm oil industry produces liquid waste called POME (palm oil mill effluent). POME is stated as one of the wastes that are difficult to handle because of its large production and ineffective treatment. It will disturb the ecosystem with a high organic matter content if the waste is disposed directly into the environment. The authorities have established policies and regulations in the POME waste quality standard before being discharged into the environment. However, at this time, there are still many factories in Indonesia that have not been able to meet the standard of POME waste disposal with the existing treatment technology. Currently, the POME treatment system is still using a conventional system known as an open pond system. Although this process can reduce pollutants' concentration, it will produce much sludge, requiring a large pond area and a long processing time. To overcome the inability of the conventional system to process POME is believed to be a challenge. Extensive effort is being invested in developing alternative technologies for the POME waste treatment to reduce POME waste safely. Several technologies have been studied, such as anaerobic processes, membrane technology, advanced oxidation processes (AOPs), membrane technology, adsorption, steam reforming, and coagulation. Among other things, an AOP, namely photocatalytic technology, has the potential to treat POME waste. This paper provides information on the feasibility of photocatalytic technology for treating POME waste. Although there are some challenges in this technology's large-scale application, this paper proposes several strategies and directions to overcome these challenges.

14.
BMC Med Genomics ; 14(1): 144, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074255

RESUMO

BACKGROUND: Transmission within families and multiple spike protein mutations have been associated with the rapid transmission of SARS-CoV-2. We aimed to: (1) describe full genome characterization of SARS-CoV-2 and correlate the sequences with epidemiological data within family clusters, and (2) conduct phylogenetic analysis of all samples from Yogyakarta and Central Java, Indonesia and other countries. METHODS: The study involved 17 patients with COVID-19, including two family clusters. We determined the full-genome sequences of SARS-CoV-2 using the Illumina MiSeq next-generation sequencer. Phylogenetic analysis was performed using a dataset of 142 full-genomes of SARS-CoV-2 from different regions. RESULTS: Ninety-four SNPs were detected throughout the open reading frame (ORF) of SARS-CoV-2 samples with 58% (54/94) of the nucleic acid changes resulting in amino acid mutations. About 94% (16/17) of the virus samples showed D614G on spike protein and 56% of these (9/16) showed other various amino acid mutations on this protein, including L5F, V83L, V213A, W258R, Q677H, and N811I. The virus samples from family cluster-1 (n = 3) belong to the same clade GH, in which two were collected from deceased patients, and the other from the survived patient. All samples from this family cluster revealed a combination of spike protein mutations of D614G and V213A. Virus samples from family cluster-2 (n = 3) also belonged to the clade GH and showed other spike protein mutations of L5F alongside the D614G mutation. CONCLUSIONS: Our study is the first comprehensive report associating the full-genome sequences of SARS-CoV-2 with the epidemiological data within family clusters. Phylogenetic analysis revealed that the three viruses from family cluster-1 formed a monophyletic group, whereas viruses from family cluster-2 formed a polyphyletic group indicating there is the possibility of different sources of infection. This study highlights how the same spike protein mutations among members of the same family might show different disease outcomes.


Assuntos
COVID-19/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/patologia , COVID-19/virologia , Criança , Família , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Indonésia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Filogenia , RNA Viral/química , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequenciamento Completo do Genoma
15.
Vet World ; 14(3): 758-763, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935424

RESUMO

BACKGROUND AND AIM: Classical swine fever (CSF) is one of the primary diseases in animals in Indonesia, particularly areas that supply pig meat to the country, such as Karanganyar district, Central Java. The government has tried to prevent and control the disease by vaccination, but it has not yet given effective results. Therefore, another attempt to prevent the recurrence of CSF cases is to apply biosecurity in pig farms by looking for risk factors associated with on-farm and off-farm contact. This study aims to determine the contact rate and investigate the risk factors associated with on-farm and off-farm contact in commercial and smallholder pig farms in Karanganyar, Central Java, Indonesia, in the context of controlling CSF disease. MATERIALS AND METHODS: This study used a cross-sectional study design in which the pig farm was designed as the observed epidemiological unit. The contact structure data were conducted by sampling using a two-stage random method. We selected Karanganyar district because it is the center of a pig farm in the Central Java Province and has many CSF cases in several years before. The study was conducted for more or less 1 month from August to September 2019. The contact data were collected from 37 smallholder farms and 27 commercial farms within interviews. Risk factors for contact with pigs were analyzed using logistic regression using theStatistix Program version 8.0.(www.statistix.com). RESULTS: In comparison to smallholder farms, commercial farms had 2.38 and 3.32 times higher contact rate in outside farms and inside farms, respectively. Two factors increased the risk for on-farm contacts including commercials type farm (p=0.0012; odds ratio [OR]=8.32) with contact rate of 1.24 times/day and the time interval of CSF vaccination for 1-3 months (p=0.0013; OR=8.43) with contact rate of 0.98 times/day, and three factors increased the risk for off-farm contacts including the commercial farm type (p=0.012; OR=4.88) with 1.50 contact/day, the time interval of CSF vaccination for 1-3 months (p=0.036; OR=3.83) with 1.30 contact/day, and farmers with experience in pig husbandry <5 years (p=0.075; OR=3.56) with 1.13 contact/day. CONCLUSION: This study shows that commercial farms and short CSF vaccination intervals increased the risk of either off-farm or on-farm contacts. The contact structure of pig farms in Karanganyar district is similar to that in other areas in Indonesia. Reducing the risk of contacts either outside or inside the pig farms is essential to prevent disease transmission. Enhancing communication and education to pig farmers and surveillance is also necessary to prevent such diseases in pigs.

16.
Front Vet Sci ; 7: 544279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263010

RESUMO

Swine could play a role as a "mixing vessel" for avian and human influenza viruses and should, therefore, be thought of playing an intermediate role in the emergence of pandemic influenza strains. The aim of this study was to identify risk factors for Swine influenza virus (SIV) seropositivity at the farm level in West Java and Banten provinces, Indonesia. A total of 649 blood samples were collected from 175 pig farms, and at the time of sampling, a questionnaire about routine herd management was administered to participant herd managers. Swine influenza virus serological status for each of the sampled pigs was tested using the IDEXX ELISA-test (Maine, US). The apparent herd-level prevalence of SIV seropositivity was expressed as a true herd-level prevalence using the Rogan and Gladen method, modified to account for low and high prevalence herds using a Markov chain Monte Carlo Bayesian approach. The association between herd-level characteristics and SIV seropositivity status was assessed using binary logistic regression. The true prevalence of SIV seropositivity was 26% (95% CI = 20-33). The presence of animals apart from pigs on farm (odds ratio, OR = 2.51, 95% CI = 1.0-6.0), keeping breeding sows for <2 years (OR = 5.9, 95% Cl = 1.8-20), being <1 km from a poultry farm (OR = 2.4, 95% Cl = 1.0-5.7), and purchasing pigs only through pig collectors (OR = 11, 95% CI = 4.3-29) increased the risk of a herd being seropositive to SIV. Our results show that biosecurity to limit the introduction of SIV should be enhanced on farms located in areas of high pig and poultry farm density. While the role that pig collectors play in the transmission of SIV warrants further investigation, swine producers in West Java and Banten should be made aware of the enhanced risk of SIV associated with purchasing of replacements from collectors.

17.
Vet World ; 13(6): 1138-1144, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32801565

RESUMO

BACKGROUND AND AIM: In Indonesia, highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry are still reported. The disease causes a decrease in egg production and an increase in mortality; this has an impact on the economic losses of farmers. Several studies have considered that ducks play a role in the HPAI endemicity in the country; however, little is known about whether or not the type of duck farming is associated with HPAI H5 virus infection, particularly within clade 2.3.2.1c, which has been predominantly found in poultry since 2014. A cross-sectional study was conducted to determine the HPAI seroprevalence for H5 subtype clade 2.3.2.1c in laying ducks that are kept intensively and nomadically and to determine the associated risk factors. MATERIALS AND METHODS: Forty-nine duck farmers were randomly selected from ten sub-districts in Purbalingga District, Central Java, Indonesia; a cross-sectional study was implemented to collect field data. Based on an expected HPAI prevalence level of 10%, estimated accuracy of ± 5%, and 95% confidence interval (CI), the total sample size was calculated at 36 individuals. Samples must be multiplied by 7 to reduce bias; thus, 252 ducks were taken as samples in this study. Considering that the maintenance and duck handling were uniform and farmers complained that the effect of activity to take duck samples would reduce egg production, this study only took samples from 245 ducks (oropharyngeal swabs and serum). Those samples were taken from five birds on each farm. Hemagglutination inhibition tests examined the serum samples for HPAI H5 Clade 2.3.2.1c, and pool swab samples (five swabs in one viral media transport) were examined by real-time reverse transcription-polymerase chain reaction (qRT-PCR) test for influenza Type A and H5 subtype virus. Information regarding farm management was obtained using a questionnaire; face-to-face interviews were conducted with the duck farmers using native Javanese language. RESULTS: Serum and swabs from 245 ducks were collected in total. For individual birds, 54.69% (134/245) of serum samples were H5 seropositive. Seroprevalence among nomadic ducks was 59.28% (95% CI: 0.48-0.61), which was higher than among intensively farmed ducks (48.57%, 95% CI: 0.38-0.58). Farm-level seroprevalence was 50% (95% CI: 0.30-0.69) for nomadic ducks but only 28.57% (95% CI: 0.11-0.51) for intensively farmed ducks. The farm-level virus prevalence (proportion of flocks with at least one bird positive for influenza Type A) was 17.85% (95% CI: 0.07-0.35) for nomadic ducks and 4.76% (1/21) for intensively farmed ducks (95% CI: 0.008-0.23). All influenza Type A positive samples were negative for the H5 subtype, indicating that another HA subtype AI viruses might have been circulating in ducks in the study area. A relationship between duck farms that were H5 seropositive and their maintenance system was present; however, this relationship was not significant, the nomadic duck system detected 2 times higher H5-seropositive ducks than the intensive farming system (OR: 2.16, 95% CI: 0.33-14.31). CONCLUSION: This study found that the seroprevalence of HPAI in the duck population level in Purbalingga was 54.69% and demonstrated that the nomadic duck farming system was more likely to acquire HPAI H5 infection than the intensive farming duck system. Other risk factors should be further investigated as the diversity of the farming system is partially related to HPAI H5 infection.

18.
RSC Adv ; 10(46): 27713-27719, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516932

RESUMO

Defect engineering of semiconductor photocatalysts is considered as an evolving strategy to adjust their physiochemical properties and boost photoreactivity of the materials. Here, hydrogenation and UV light pre-treatment of TiO2/SiO2 composite with the ratio of 9 : 1 (9TiO2/1SiO2) were conducted to generate Ti3+ and non-bridging oxygen holes center (NBOHC) defects, respectively. The 9TiO2/1SiO2 composite exhibited much higher photocatalytic water splitting than neat TiO2 and SiO2 as a consequence of the electronic structure effects induced by the defect sites. Electron paramagnetic resonance (EPR) indicated that hydrogenated and UV light pre-treated of 9TiO2/1SiO2 boosted a higher density of Ti3+ and NBOHC defect which could serve to suppress photogenerated electron-hole pair recombination and act as shallow donors to trap photoexcited electron. Overall, both defect sites in 9TiO2/1SiO2 delivered advantageous characteristic relative to neat TiO2 and SiO2 with the finding clearly illustrating the value of defect engineering in enhancing photocatalytic performance.

19.
PeerJ ; 8: e10575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391880

RESUMO

BACKGROUND: Recently, SARS-CoV-2 virus with the D614G mutation has become a public concern due to rapid dissemination of this variant across many countries. Our study aims were (1) to report full-length genome sequences of SARS-CoV-2 collected from four COVID-19 patients in the Special Region of Yogyakarta and Central Java provinces, Indonesia; (2) to compare the clade distribution of full-length genome sequences from Indonesia (n = 60) from March to September 2020 and (3) to perform phylogenetic analysis of SARS-CoV-2 complete genomes from different countries, including Indonesia. METHODS: Whole genome sequencing (WGS) was performed using next-generation sequencing (NGS) applied in the Illumina MiSeq instrument. Full-length virus genomes were annotated using the reference genome of hCoV-19/Wuhan/Hu-1/2019 (NC_045512.2) and then visualized in UGENE v. 1.30. For phylogenetic analysis, a dataset of 88 available SARS-CoV-2 complete genomes from different countries, including Indonesia, was retrieved from GISAID. RESULTS: All patients were hospitalized with various severities of COVID-19. Phylogenetic analysis revealed that one and three virus samples belong to clade L and GH. These three clade GH virus samples (EPI_ISL_525492, EPI_ISL_516800 and EPI_ISL_516829) were not only located in a cluster with SARS-CoV-2 genomes from Asia but also those from Europe, whereas the clade L virus sample (EPI_ISL_516806) was located amongst SARS-CoV-2 genomes from Asia. Using full-length sequences available in the GISAID EpiCoV Database, 39 of 60 SARS-CoV-2 (65%) from Indonesia harbor the D614G mutation. CONCLUSION: These findings indicate that SARS-CoV-2 with the D614G mutation appears to become the major circulating virus in Indonesia, concurrent with the COVID-19 situation worldwide.

20.
Transbound Emerg Dis ; 67(2): 994-1007, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31770478

RESUMO

In July 2016, an avian influenza outbreak in duck farms in Yogyakarta province was reported to Disease Investigation Center (DIC), Wates, Indonesia, with approximately 1,000 ducks died or culled. In this study, two avian influenza (AI) virus subtypes, A/duck/Bantul/04161291-OR/2016 (H5N1) and A/duck/Bantul/04161291-OP/2016 (H9N2) isolated from ducks in the same farm during an AI outbreak in Bantul district, Yogyakarta province, were sequenced and characterized. Our results showed that H5N1 virus was closely related to the highly pathogenic AI (HPAI) H5N1 of clade 2.3.2.1c, while the H9N2 virus was clustered with LPAI viruses from China, Vietnam and Indonesia H9N2 (CVI lineage). Genetic analysis revealed virulence characteristics for both in avian and in mammalian species. In summary, co-circulation of HPAI-H5N1 of clade 2.3.2.1c and LPAI-H9N2 was identified in a duck farm during an AI outbreak in Yogyakarta province, Indonesia. Our findings raise a concern of the potential risk of the viruses, which could increase viral transmission and/or threat to human health. Routine surveillance of avian influenza viruses should be continuously conducted to understand the dynamic and diversity of the viruses for influenza prevention and control in Indonesia and SEA region.


Assuntos
Surtos de Doenças/veterinária , Patos/virologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Fazendas , Humanos , Indonésia/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...