Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 13(1): 6777, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185361

RESUMO

Genome-wide association studies (GWAS) have contributed to our understanding of glioma susceptibility. To date, 25 risk loci for development of any of the glioma subtypes are known. However, GWAS studies reveal little about the molecular processes that lead to increased risk, especially for non-coding single nucleotide polymorphisms (SNP). A particular SNP in intron 2 of LRIG1, rs11706832, has been shown to increase the susceptibility for IDH1 mutated low-grade gliomas (LGG). Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is important in cancer development as it negatively regulates the epidermal growth factor receptor (EGFR); however, the mechanism responsible for this particular risk SNP and its potential effect on LRIG1 are not known. Using CRISPR-CAS9, we edited rs11706832 in HEK293T cells. Four HEK293T clones with the risk allele were compared to four clones with the non-risk allele for LRIG1 and SLC25A26 gene expression using RT-qPCR, for global gene expression using RNA-seq, and for metabolites using gas chromatography-mass spectrometry (GC-MS). The experiment did not reveal any significant effect of the SNP on the expression levels or splicing patterns of LRIG1 or SLC25A26. The global gene expression analysis revealed that the risk allele C was associated with upregulation of several mitochondrial genes. Gene enrichment analysis of 74 differentially expressed genes in the genome revealed a significant enrichment of type I interferon response genes, where many genes were downregulated for the risk allele C. Gene expression data of IDH1 mutated LGGs from the cancer genome atlas (TCGA) revealed a similar under expression of type I interferon genes associated with the risk allele. This study found the expression levels and splicing patterns of LRIG1 and SLC25A26 were not affected by the SNP in HEK293T cells. However, the risk allele was associated with a downregulation of genes involved in the innate immune response both in the HEK293T cells and in the LGG data from TCGA.


Assuntos
Glioma , Interferon Tipo I , Humanos , Proliferação de Células , Glicoproteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Proteínas de Ligação ao Cálcio/genética , Sistemas de Transporte de Aminoácidos/genética
2.
Neurooncol Adv ; 4(Suppl 2): ii73-ii80, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36380862

RESUMO

Background: Understanding the trajectory and development of disease is important and the knowledge can be used to find novel targets for therapy and new diagnostic tools for early diagnosis. Methods: Large cohorts from different parts of the world are unique assets for research as they have systematically collected plasma and DNA over long-time periods in healthy individuals, sometimes even with repeated samples. Over time, the population in the cohort are diagnosed with many different diseases, including brain tumors. Results: Recent studies have detected genetic variants that are associated with increased risk of glioblastoma and lower grade gliomas specifically. The impact for genetic markers to predict disease in a healthy population has been deemed low, and a relevant question is if the genetic variants for glioma are associated with risk of disease or partly consist of genes associated to survival. Both metabolite and protein spectra are currently being explored for early detection of cancer. Conclusions: We here present a focused review of studies of genetic variants, metabolomics, and proteomics studied in prediagnostic glioma samples and discuss their potential in early diagnostics.

3.
Cell Rep Med ; 3(10): 100776, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260985

RESUMO

Hip fracture is the clinically most important fracture, but the genetic architecture of hip fracture is unclear. Here, we perform a large-scale hip fracture genome-wide association study meta-analysis and Mendelian randomization study using five cohorts from European biobanks. The results show that five genetic signals associate with hip fractures. Among these, one signal associates with falls, but not with bone mineral density (BMD), while four signals are in loci known to be involved in bone biology. Mendelian randomization analyses demonstrate a strong causal effect of decreased femoral neck BMD and moderate causal effects of Alzheimer's disease and having ever smoked regularly on risk of hip fractures. The substantial causal effect of decreased femoral neck BMD on hip fractures in both young and old subjects and in both men and women supports the use of change in femoral neck BMD as a surrogate outcome for hip fractures in clinical trials.


Assuntos
Estudo de Associação Genômica Ampla , Fraturas do Quadril , Masculino , Feminino , Humanos , Análise da Randomização Mendeliana , Densidade Óssea/genética , Fraturas do Quadril/epidemiologia , Colo do Fêmur
4.
Neuro Oncol ; 24(9): 1454-1468, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157758

RESUMO

BACKGROUND: Gliomas are complex tumors with several genetic aberrations and diverse metabolic programs contributing to their aggressive phenotypes and poor prognoses. This study defines key metabolic features that can be used to differentiate between glioma subtypes, with potential for improved diagnostics and subtype targeted therapy. METHODS: Cross-platform global metabolomic profiling coupled with clinical, genetic, and pathological analysis of glioma tissue from 224 tumors-oligodendroglioma (n = 31), astrocytoma (n = 31) and glioblastoma (n = 162)-were performed. Identified metabolic phenotypes were evaluated in accordance with the WHO classification, IDH-mutation, 1p/19q-codeletion, WHO-grading 2-4, and MGMT promoter methylation. RESULTS: Distinct metabolic phenotypes separate all six analyzed glioma subtypes. IDH-mutated subtypes, expressing 2-hydroxyglutaric acid, were clearly distinguished from IDH-wildtype subtypes. Considerable metabolic heterogeneity outside of the mutated IDH pathway were also evident, with key metabolites being high expression of glycerophosphates, inositols, monosaccharides, and sugar alcohols and low levels of sphingosine and lysoglycerophospholipids in IDH-mutants. Among the IDH-mutated subtypes, we observed high levels of amino acids, especially glycine and 2-aminoadipic acid, in grade 4 glioma, and N-acetyl aspartic acid in low-grade astrocytoma and oligodendroglioma. Both IDH-wildtype and mutated oligodendroglioma and glioblastoma were characterized by high levels of acylcarnitines, likely driven by rapid cell growth and hypoxic features. We found elevated levels of 5-HIAA in gliosarcoma and a subtype of oligodendroglioma not yet defined as a specific entity, indicating a previously not described role for the serotonin pathway linked to glioma with bimorphic tissue. CONCLUSION: Key metabolic differences exist across adult glioma subtypes.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Oligodendroglioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Organização Mundial da Saúde
5.
Cancer Med ; 11(4): 1016-1025, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35029050

RESUMO

No strong aetiological factors have been established for glioma aside from genetic mutations and variants, ionising radiation and an inverse relationship with asthmas and allergies. Our aim was to investigate the association between pre-diagnostic immune protein levels and glioma risk. We conducted a case-control study nested in the Northern Sweden Health and Disease Study cohort. We analysed 133 glioma cases and 133 control subjects matched by age, sex and date of blood donation. ELISA or Luminex bead-based multiplex assays were used to measure plasma levels of 19 proteins. Conditional logistic regression models were used to estimate the odds ratios and 95% CIs. To further model the protein trajectories over time, the linear mixed-effects models were conducted. We found that the levels of sVEGFR2, sTNFR2, sIL-2Rα and sIL-6R were associated with glioma risk. After adjusting for the time between blood sample collection and glioma diagnosis, the odds ratios were 1.72 (95% CI = 1.01-2.93), 1.48 (95% CI = 1.01-2.16) and 1.90 (95% CI = 1.14-3.17) for sTNFR2, sIL-2Rα and sIL-6R, respectively. The trajectory of sVEGFR2 concentrations over time was different between cases and controls (p-value = 0.031), increasing for cases (0.8% per year) and constant for controls. Our findings suggest these proteins play important roles in gliomagenesis.


Assuntos
Glioma , Estudos de Casos e Controles , Estudos de Coortes , Glioma/diagnóstico , Glioma/epidemiologia , Glioma/etiologia , Humanos , Modelos Logísticos , Razão de Chances
6.
Cancer Epidemiol Biomarkers Prev ; 30(11): 2052-2058, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426415

RESUMO

BACKGROUND: Changes in immune marker levels in the blood could be used to improve the early detection of tumor-associated inflammatory processes. To increase predictiveness and utility in cancer detection, intraindividual long-term stability in cancer-free individuals is critical for biomarker candidates as to facilitate the detection of deviation from the norm. METHODS: We assessed intraindividual long-term stability for 19 immune markers (IL10, IL13, TNFα, CXCL13, MCP-3, MIP-1α, MIP-1ß, fractalkine, VEGF, FGF-2, TGFα, sIL2Rα, sIL6R, sVEGF-R2, sTNF-R1, sTNF-R2, sCD23, sCD27, and sCD30) in 304 cancer-free individuals. Repeated blood samples were collected up to 20 years apart. Intraindividual reproducibility was assessed by calculating intraclass correlation coefficients (ICC) using a linear mixed model. RESULTS: ICCs indicated fair to good reproducibility (ICCs ≥ 0.40 and < 0.75) for 17 of 19 investigated immune markers, including IL10, IL13, TNFα, CXCL13, MCP-3, MIP-1α, MIP-1ß, fractalkine, VEGF, FGF-2, TGFα, sIL2Rα, sIL6R, sTNF-R1, sTNF-R2, sCD27, and sCD30. Reproducibility was strong (ICC ≥ 0.75) for sCD23, while reproducibility was poor (ICC < 0.40) for sVEGF-R2. Using a more stringent criterion for reproducibility (ICC ≥ 0.55), we observed either acceptable or better reproducibility for IL10, IL13, CXCL13, MCP-3, MIP-1α, MIP-1ß, VEGF, FGF-2, sTNF-R1, sCD23, sCD27, and sCD30. CONCLUSIONS: IL10, IL13, CXCL13, MCP-3, MIP-1α, MIP-1ß, VEGF, FGF-2, sTNF-R1, sCD23, sCD27, and sCD30 displayed ICCs consistent with intraindividual long-term stability in cancer-free individuals. IMPACT: Our data support using these markers in prospective longitudinal studies seeking early cancer detection biomarkers.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias/sangue , Biomarcadores Tumorais/análise , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Estudos Prospectivos
7.
J Neurooncol ; 147(2): 309-315, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32056145

RESUMO

INTRODUCTION: Medulloblastoma is a malignant embryonal tumor of the cerebellum that occurs predominantly in children. To find germline genetic variants associated with medulloblastoma risk, we conducted a genome-wide association study (GWAS) including 244 medulloblastoma cases and 247 control subjects from Sweden and Denmark. METHODS: Genotyping was performed using Illumina BeadChips, and untyped variants were imputed using IMPUTE2. RESULTS: Fifty-nine variants in 11 loci were associated with increased medulloblastoma risk (p < 1 × 10-5), but none were statistically significant after adjusting for multiple testing (p < 5 × 10-8). Thirteen of these variants were genotyped, whereas 46 were imputed. Genotyped variants were further investigated in a validation study comprising 249 medulloblastoma cases and 629 control subjects. In the validation study, rs78021424 (18p11.23, PTPRM) was associated with medulloblastoma risk with OR in the same direction as in the discovery cohort (ORT = 1.59, pvalidation = 0.02). We also selected seven medulloblastoma predisposition genes for investigation using a candidate gene approach: APC, BRCA2, PALB2, PTCH1, SUFU, TP53, and GPR161. The strongest evidence for association was found for rs201458864 (PALB2, ORT = 3.76, p = 3.2 × 10-4) and rs79036813 (PTCH1, ORA = 0.42, p = 2.6 × 10-3). CONCLUSION: The results of this study, including a novel potential medulloblastoma risk loci at 18p11.23, are suggestive but need further validation in independent cohorts.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Meduloblastoma/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Neoplasias Cerebelares/patologia , Estudos de Coortes , Genótipo , Humanos , Meduloblastoma/patologia , Prognóstico
8.
Cancers (Basel) ; 11(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842352

RESUMO

Genome-wide association studies have identified 25 germline genetic loci that increase the risk of glioma. The somatic tumor molecular alterations, including IDH-mutation status and 1p/19q co-deletion, have been included into the WHO 2016 classification system for glioma. To investigate how the germline genetic risk variants correlate with the somatic molecular subtypes put forward by WHO, we performed a meta-analysis that combined findings from 330 Swedish cases and 876 controls with two other recent studies. In total, 5,103 cases and 10,915 controls were included. Three categories of associations were found. First, variants in TERT and TP53 were associated with increased risk of all glioma subtypes. Second, variants in CDKN2B-AS1, EGFR, and RTEL1 were associated with IDH-wildtype glioma. Third, variants in CCDC26 (the 8q24 locus), C2orf80 (close to IDH), LRIG1, PHLDB1, ETFA, MAML2 and ZBTB16 were associated with IDH-mutant glioma. We therefore propose three etiopathological pathways in gliomagenesis based on germline variants for future guidance of diagnosis and potential functional targets for therapies. Future prospective clinical trials of patients with suspicion of glioma diagnoses, using the genetic variants as biomarkers, are necessary to disentangle how strongly they can predict glioma diagnosis.

9.
Cancer Epidemiol Biomarkers Prev ; 28(7): 1252-1258, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31040135

RESUMO

BACKGROUND: Genome-wide association studies have identified germline genetic variants in 25 genetic loci that increase the risk of developing glioma in adulthood. It is not known if these variants increase the risk of developing glioma in children and adolescents and young adults (AYA). To date, no studies have performed genome-wide analyses to find novel genetic variants associated with glioma risk in children and AYA. METHODS: We investigated the association between 8,831,628 genetic variants and risk of glioma in 854 patients diagnosed up to the age of 29 years and 3,689 controls from Sweden and Denmark. Recruitment of patients and controls was population based. Genotyping was performed using Illumina BeadChips, and untyped variants were imputed with IMPUTE2. We selected 41 established adult glioma risk variants for detailed investigation. RESULTS: Three adult glioma risk variants, rs634537, rs2157719, and rs145929329, all mapping to the 9p21.3 (CDKN2B-AS1) locus, were associated with glioma risk in children and AYA. The strongest association was seen for rs634537 (odds ratioG = 1.21; 95% confidence interval = 1.09-1.35; P = 5.8 × 10-4). In genome-wide analysis, an association with risk was suggested for 129 genetic variants (P <1 × 10-5). CONCLUSIONS: Carriers of risk alleles in the 9p21.3 locus have an increased risk of glioma throughout life. The results from genome-wide association analyses require validation in independent cohorts. IMPACT: Our findings line up with existing evidence that some, although not all, established adult glioma risk variants are associated with risk of glioma in children and AYA. Validation of results from genome-wide analyses may reveal novel susceptibility loci for glioma in children and AYA.


Assuntos
Loci Gênicos/genética , Glioma/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Masculino , Fatores de Risco , Adulto Jovem
10.
Haematologica ; 104(12): 2456-2464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30948485

RESUMO

Biomarkers reliably predicting progression to multiple myeloma (MM) are lacking. Myeloma risk has been associated with low blood levels of monocyte chemotactic protein-3 (MCP-3), macrophage inflammatory protein-1 alpha (MIP-1α), vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), fractalkine, and transforming growth factor-alpha (TGF-α). In this study, we aimed to replicate these findings and study the individual dynamics of each marker in a prospective longitudinal cohort, thereby examining their potential as markers of myeloma progression. For this purpose, we identified 65 myeloma cases and 65 matched cancer-free controls each with two donated blood samples within the Northern Sweden Health and Disease Study. The first and repeated samples from myeloma cases were donated at a median 13 and 4 years, respectively, before the myeloma was diagnosed. Known risk factors for progression were determined by protein-, and immunofixation electrophoresis, and free light chain assays. We observed lower levels of MCP-3, VEGF, FGF-2, and TGF-α in myeloma patients than in controls, consistent with previous data. We also observed that these markers decreased among future myeloma patients while remaining stable in controls. Decreasing trajectories were noted for TGF-α (P=2.5 × 10-4) indicating progression to MM. Investigating this, we found that low levels of TGF-α assessed at the time of the repeated sample were independently associated with risk of progression in a multivariable model (hazard ratio = 3.5; P=0.003). TGF-α can potentially improve early detection of MM.


Assuntos
Biomarcadores/sangue , Mieloma Múltiplo/sangue , Mieloma Múltiplo/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Reprodutibilidade dos Testes
11.
PLoS One ; 14(3): e0213350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917156

RESUMO

Whole-genome sequencing is a promising approach for human autosomal dominant disease studies. However, the vast number of genetic variants observed by this method constitutes a challenge when trying to identify the causal variants. This is often handled by restricting disease studies to the most damaging variants, e.g. those found in coding regions, and overlooking the remaining genetic variation. Such a biased approach explains in part why the genetic causes of many families with dominantly inherited diseases, in spite of being included in whole-genome sequencing studies, are left unsolved today. Here we explore the use of a geographically matched control population to minimize the number of candidate disease-causing variants without excluding variants based on assumptions on genomic position or functional predictions. To exemplify the benefit of the geographically matched control population we apply a typical disease variant filtering strategy in a family with an autosomal dominant form of colorectal cancer. With the use of the geographically matched control population we end up with 26 candidate variants genome wide. This is in contrast to the tens of thousands of candidates left when only making use of available public variant datasets. The effect of the local control population is dual, it (1) reduces the total number of candidate variants shared between affected individuals, and more importantly (2) increases the rate by which the number of candidate variants are reduced as additional affected family members are included in the filtering strategy. We demonstrate that the application of a geographically matched control population effectively limits the number of candidate disease-causing variants and may provide the means by which variants suitable for functional studies are identified genome wide.


Assuntos
Doenças Genéticas Inatas/genética , Variação Genética , Sequenciamento Completo do Genoma , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Feminino , Genes Dominantes , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Geografia , Haplótipos , Humanos , Masculino , Linhagem , Suécia , Sequenciamento Completo do Genoma/estatística & dados numéricos
12.
Cancer Causes Control ; 30(2): 177-185, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30560391

RESUMO

PURPOSE: Previous studies have suggested an association between relative leukocyte telomere length (rLTL) and glioma risk. This association may be influenced by several factors, including allergies, BMI, and smoking. Previous studies have shown that individuals with asthma and allergy have shortened relative telomere length, and decreased risk of glioma. Though, the details and the interplay between rLTL, asthma and allergies, and glioma molecular phenotype is largely unknown. METHODS: rLTL was measured by qPCR in a Swedish population-based glioma case-control cohort (421 cases and 671 controls). rLTL was related to glioma risk and health parameters associated with asthma and allergy, as well as molecular events in glioma including IDH1 mutation, 1p/19q co-deletion, and EGFR amplification. RESULTS: Longer rLTL was associated with increased risk of glioma (OR = 1.16; 95% CI 1.02-1.31). Similar to previous reports, there was an inverse association between allergy and glioma risk. Specific, allergy symptoms including watery eyes was most strongly associated with glioma risk. High body mass index (BMI) a year prior diagnosis was significantly protective against glioma in our population. Adjusting for allergy, asthma, BMI, and smoking did not markedly change the association between longer rLTL and glioma risk. rLTL among cases was not associated with IDH1 mutation, 1p/19q co-deletion, or EGFR amplification, after adjusting for age at diagnosis and sex. CONCLUSIONS: In this Swedish glioma case-control cohort, we identified that long rLTL increases the risk of glioma, an association not confounded by allergy, BMI, or smoking. This highlights the complex interplay of the immune system, rLTL and cancer risk.


Assuntos
Neoplasias Encefálicas/epidemiologia , Glioma/epidemiologia , Leucócitos , Telômero , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Neoplasias Encefálicas/genética , Estudos de Casos e Controles , Fatores de Confusão Epidemiológicos , Feminino , Glioma/genética , Humanos , Hipersensibilidade/epidemiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Fumar/epidemiologia , Suécia/epidemiologia
13.
Cancer Res ; 77(6): 1408-1415, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28108506

RESUMO

The B-cell activation markers CXCL13, sCD23, sCD27, and sCD30 are associated with future lymphoma risk. However, a lack of information about the individual dynamics of marker-disease association hampers interpretation. In this study, we identified 170 individuals who had donated two prediagnostic blood samples before B-cell lymphoma diagnosis, along with 170 matched cancer-free controls from the Northern Sweden Health and Disease Study. Lymphoma risk associations were investigated by subtype and marker levels measured at baseline, at the time of the repeated sample, and with the rate of change in the marker level. Notably, we observed strong associations between CXCL13, sCD23, sCD27, and sCD30 and lymphoma risk in blood samples collected 15 to 25 years before diagnosis. B-cell activation marker levels increased among future lymphoma cases over time, while remaining stable among controls. Associations between slope and risk were strongest for indolent lymphoma subtypes. We noted a marked association of sCD23 with chronic lymphocytic leukemia (ORSlope = 28, Ptrend = 7.279 × 10-10). Among aggressive lymphomas, the association between diffuse large B-cell lymphoma risk and slope was restricted to CXCL13. B-cell activation seemed to play a role in B-cell lymphoma development at early stages across different subtypes. Furthermore, B-cell activation presented differential trajectories in future lymphoma patients, mainly driven by indolent subtypes. Our results suggest a utility of these markers in predicting the presence of early occult disease and/or the screening and monitoring of indolent lymphoma in individual patients. Cancer Res; 77(6); 1408-15. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/sangue , Linfoma de Células B/classificação , Linfoma de Células B/diagnóstico , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Linfoma de Células B/sangue , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Fatores de Tempo
14.
PLoS One ; 11(10): e0163067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27780202

RESUMO

Genome-wide association studies and candidate gene studies have identified several genetic variants that increase glioma risk. The majority of these variants are non-coding and the mechanisms behind the increased risk in carriers are not known. In this study, we hypothesize that some of the established glioma risk variants induce aberrant DNA methylation in the developing tumor, either locally (gene-specific) or globally (genome-wide). In a pilot data set including 77 glioma patients, we used Illumina beadchip technology to analyze genetic variants in blood and DNA methylation in matched tumor samples. To validate our findings, we used data from the Cancer Genome Atlas, including 401 glioblastoma patients. Consensus clustering identified the glioma CpG island methylator phenotype (gCIMP) and two additional subgroups with distinct patterns of global DNA methylation. In the pilot dataset, gCIMP was associated with two genetic variants in CDKN2B-AS1, rs1412829 and rs4977756 (9p21.3, p = 8.1 x 10-7 and 4.8 x 10-5, respectively). The association was in the same direction in the TCGA dataset, although statistically significant only when combining individuals with AG and GG genotypes. We also investigated the relation between glioma risk variants and DNA methylation in the promoter region of genes located within 30 kb of each variant. One association in the pilot dataset, between the TERT risk variant rs2736100 and lower methylation of cg23827991 (in TERT; p = 0.001), was confirmed in the TCGA dataset (p = 0.001). In conclusion, we found an association between rs1412829 and rs4977756 (9p21.3, CDKN2B-AS1) and global DNA methylation pattern in glioma, for which a trend was seen also in the TCGA glioblastoma dataset. We also found an association between rs2736100 (in TERT) and levels of methylation at cg23827991 (localized in the same gene, 3.3 kbp downstream of the risk variant), which was validated in the TCGA dataset. Except for this one association, we did not find strong evidence for gene-specific DNA methylation mediated by glioma risk variants.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Glioma/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Telomerase/genética , Ilhas de CpG , Bases de Dados Genéticas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glioblastoma/genética , Humanos , Oligodendroglioma/genética , Projetos Piloto , Regiões Promotoras Genéticas
15.
Oncotarget ; 7(24): 37043-37053, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27175595

RESUMO

Glioblastoma is associated with poor prognosis with a median survival of one year. High doses of ionizing radiation is the only established exogenous risk factor. To explore new potential biological risk factors for glioblastoma, we investigated alterations in metabolite concentrations in pre-diagnosed serum samples from glioblastoma patients diagnosed up to 22 years after sample collection, and undiseased controls. The study points out a latent biomarker for future glioblastoma consisting of nine metabolites (γ-tocopherol, α-tocopherol, erythritol, erythronic acid, myo-inositol, cystine, 2-keto-L-gluconic acid, hypoxanthine and xanthine) involved in antioxidant metabolism. We detected significantly higher serum concentrations of α-tocopherol (p=0.0018) and γ-tocopherol (p=0.0009) in future glioblastoma cases. Compared to their matched controls, the cases showed a significant average fold increase of α- and γ-tocopherol levels: 1.2 for α-T (p=0.018) and 1.6 for γ-T (p=0.003). These tocopherol levels were associated with a glioblastoma odds ratio of 1.7 (α-T, 95% CI:1.0-3.0) and 2.1 (γ-T, 95% CI:1.2-3.8). Our exploratory metabolomics study detected elevated serum levels of a panel of molecules with antioxidant properties as well as oxidative stress generated compounds. Additional studies are necessary to confirm the association between the observed serum metabolite pattern and future glioblastoma development.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Encefálicas/sangue , Glioblastoma/sangue , alfa-Tocoferol/sangue , gama-Tocoferol/sangue , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Oxirredução
16.
Radiat Oncol ; 11: 51, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27039175

RESUMO

BACKGROUND: Glioblastomas progress rapidly making response evaluation using MRI insufficient since treatment effects are not detectable until months after initiation of treatment. Thus, there is a strong need for supplementary biomarkers that could provide reliable and early assessment of treatment efficacy. Analysis of alterations in the metabolome may be a source for identification of new biomarker patterns harboring predictive information. Ideally, the biomarkers should be found within an easily accessible compartment such as the blood. METHOD: Using gas-chromatographic- time-of-flight-mass spectroscopy we have analyzed serum samples from 11 patients with glioblastoma during the initial phase of radiotherapy. Fasting serum samples were collected at admittance, on the same day as, but before first treatment and in the morning after the second and fifth dose of radiation. The acquired data was analyzed and evaluated by chemometrics based bioinformatics methods. Our findings were compared and discussed in relation to previous data from microdialysis in tumor tissue, i.e. the extracellular compartment, from the same patients. RESULTS: We found a significant change in metabolite pattern in serum comparing samples taken before radiotherapy to samples taken during early radiotherapy. In all, 68 metabolites were lowered in concentration following treatment while 16 metabolites were elevated in concentration. All detected and identified amino acids and fatty acids together with myo-inositol, creatinine, and urea were among the metabolites that decreased in concentration during treatment, while citric acid was among the metabolites that increased in concentration. Furthermore, when comparing results from the serum analysis with findings in tumor extracellular fluid we found a common change in metabolite patterns in both compartments on an individual patient level. On an individual metabolite level similar changes in ornithine, tyrosine and urea were detected. However, in serum, glutamine and glutamate were lowered after treatment while being elevated in the tumor extracellular fluid. CONCLUSION: Cross-validated multivariate statistical models verified that the serum metabolome was significantly changed in relation to radiation in a similar pattern to earlier findings in tumor tissue. However, all individual changes in tissue did not translate into changes in serum. Our study indicates that serum metabolomics could be of value to investigate as a potential marker for assessing early response to radiotherapy in malignant glioma.


Assuntos
Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/radioterapia , Glioblastoma/sangue , Glioblastoma/radioterapia , Metaboloma , Biomarcadores Tumorais/sangue , Cromatografia Gasosa , Biologia Computacional , Glioma/sangue , Glioma/radioterapia , Humanos , Espectrometria de Massas , Análise Multivariada , Análise de Componente Principal , Radioterapia , Reprodutibilidade dos Testes
17.
Tumour Biol ; 37(8): 11065-72, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26906551

RESUMO

Genetic variants have been associated with the risk of developing glioma, but functional mechanisms on disease phenotypic traits remain to be investigated. One phenotypic trait of glioblastoma is the mutation and amplification of the epidermal growth factor receptor (EGFR) gene. We investigated associations between pre-diagnostic serum protein concentrations of EGFR and ErbB2, both members of the EGFR family, and future risk of glioma. Further, we studied if EGFR glioma risk variants were associated with EGFR and ErbB2 serum levels. We assessed the associations between genetic glioma risk variants and serum concentrations of EGFR and ErbB2, as measured in pre-diagnostic cohort serum samples of 593 glioma patients and 590 matched cancer-free controls. High serum EGFR and ErbB2 levels were associated with risk of developing glioblastoma (P = 0.008; OR = 1.58, 95 % CI = 1.13-2.22 and P = 0.017, OR = 1.63, 95 % CI = 1.09-2.44, respectively). High serum ErbB2 concentration was also associated with glioma risk overall (P = 0.049; OR = 1.39, 95 % CI = 1.00-1.93). Glioma risk variants were not associated with high serum protein abundance. In contrast, the EGFR risk variant rs4947986 (T) was correlated with decreased EGFR serum levels (study cohort P = 0.024 and controls P = 0.009). To our knowledge, this is the first study showing an association of EGFR and ErbB2 serum levels with glioma more than a decade before diagnosis, indicating that EGFR and ErbB2 serum proteins are important in early gliomagenesis. However, we did not find evidence that glioma risk variants were associated with high pre-diagnostic serum concentrations of EGFR and ErbB2.


Assuntos
Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Receptores ErbB/sangue , Glioma/sangue , Glioma/genética , Receptor ErbB-2/sangue , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
18.
J Neurooncol ; 127(3): 483-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26839018

RESUMO

During the last years, genome wide association studies have discovered common germline genetic variants associated with specific glioma subtypes. We aimed to study the association between these germline risk variants and tumor phenotypes, including copy number aberrations and protein expression. A total of 91 glioma patients were included. Thirteen well known genetic risk variants in TERT, EGFR, CCDC26, CDKN2A, CDKN2B, PHLDB1, TP53, and RTEL1 were selected for investigation of possible correlations with the glioma somatic markers: EGFR amplification, 1p/19q codeletion and protein expression of p53, Ki-67, and mutated IDH1. The CDKN2A/B risk variant, rs4977756, and the CDKN2B risk variant, rs1412829 were inversely associated (p = 0.049 and p = 0.002, respectively) with absence of a mutated IDH1, i.e., the majority of patients homozygous for the risk allele showed no or low expression of mutated IDH1. The RTEL1 risk variant, rs6010620 was associated (p = 0.013) with not having 1p/19q codeletion, i.e., the majority of patients homozygous for the risk allele did not show 1p/19q codeletion. In addition, the EGFR risk variant rs17172430 and the CDKN2B risk variant rs1412829, both showed a trend for association (p = 0.055 and p = 0.051, respectively) with increased EGFR copy number, i.e., the majority of patients homozygote for the risk alleles showed chromosomal gain or amplification of EGFR. Our findings indicate that CDKN2A/B risk genotypes are associated with primary glioblastoma without IDH mutation, and that there is an inverse association between RTEL1 risk genotypes and 1p/19q codeletion, suggesting that these genetic variants have a molecular impact on the genesis of high graded brain tumors. Further experimental studies are needed to delineate the functional mechanism of the association between genotype and somatic genetic aberrations.


Assuntos
Biomarcadores Tumorais/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , DNA Helicases/genética , Receptores ErbB/genética , Glioma/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Seguimentos , Predisposição Genética para Doença , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação/genética , Gradação de Tumores , Prognóstico , Fatores de Risco , Taxa de Sobrevida , Adulto Jovem
19.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26367794

RESUMO

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Assuntos
Densidade Óssea/genética , Fraturas Ósseas/genética , Genoma Humano/genética , Proteínas de Homeodomínio/genética , Animais , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Europa (Continente)/etnologia , Exoma/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genômica , Genótipo , Humanos , Camundongos , Análise de Sequência de DNA , População Branca/genética , Proteínas Wnt/genética
20.
J Neurooncol ; 125(1): 75-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26290144

RESUMO

Recent studies have described a number of genes that are frequently altered in medulloblastoma tumors and that have putative key roles in the development of the disease. We hypothesized that common germline genetic variations in these genes may be associated with medulloblastoma development. Based on recent publications, we selected 10 genes that were frequently altered in medulloblastoma: CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC, MYCN, PTCH1, TP53, and MLL2 (now renamed as KMT2D). Common genetic variants (single nucleotide polymorphisms) annotating these genes (n = 221) were genotyped in germline DNA (neonatal dried blood spot samples) from 243 childhood medulloblastoma cases and 247 control subjects from Sweden and Denmark. Eight genetic variants annotating three genes in the sonic hedgehog signaling pathway; CCND2, PTCH1, and GLI2, were found to be associated with the risk of medulloblastoma (P(combined) < 0.05). The findings were however not statistically significant following correction for multiple testing by the very stringent Bonferroni method. The results do not support our hypothesis that common germline genetic variants in the ten studied genes are associated with the risk of developing medulloblastoma.


Assuntos
Neoplasias Encefálicas/genética , Ciclina D2/genética , Predisposição Genética para Doença/genética , Fatores de Transcrição Kruppel-Like/genética , Meduloblastoma/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética , Adolescente , Criança , Pré-Escolar , Dinamarca , Feminino , Estudos de Associação Genética , Humanos , Masculino , Receptores Patched , Receptor Patched-1 , Estudos Retrospectivos , Suécia , Adulto Jovem , Proteína Gli2 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...