Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108700, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213623

RESUMO

Mitochondria are key organelles to provide ATP for synaptic transmission. This study aims to unravel the structural adaptation of mitochondria to an increase in presynaptic energy demand and upon the functional impairment of the auditory system. We use the anteroventral cochlear nucleus (AVCN) of wild-type and congenital deaf mice before and after hearing onset as a model system for presynaptic states of lower and higher energy demands. We combine focused ion beam scanning electron microscopy and electron tomography to investigate mitochondrial morphology. We found a larger volume of synaptic boutons and mitochondria after hearing onset with a higher crista membrane density. In deaf animals lacking otoferlin, we observed a shallow increase of mitochondrial volumes toward adulthood in endbulbs, while in wild-type animals mitochondria further enlarged. We propose that in the AVCN, presynaptic mitochondria undergo major structural changes likely to serve higher energy demands upon the onset of hearing and further maturation.

3.
Front Cell Dev Biol ; 11: 1178992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635868

RESUMO

In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined. We investigated the effects of maturation and aging on the ultrastructure of the ribbon-type AZs in murine utricles using various electron microscopic techniques and combined them with confocal and super-resolution light microscopy as well as metabolic imaging up to 1 year of age. In older animals, we detected predominantly in type I VHCs the formation of floating ribbon clusters, mostly consisting of newly synthesized ribbon material. Our findings suggest that VHC ribbon-type AZs undergo dramatic structural alterations upon aging.

4.
EMBO Rep ; 24(9): e56702, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477166

RESUMO

Cochlear inner hair cells (IHCs) form specialized ribbon synapses with spiral ganglion neurons that tirelessly transmit sound information at high rates over long time periods with extreme temporal precision. This functional specialization is essential for sound encoding and is attributed to a distinct molecular machinery with unique players or splice variants compared to conventional neuronal synapses. Among these is the active zone (AZ) scaffold protein piccolo/aczonin, which is represented by its short splice variant piccolino at cochlear and retinal ribbon synapses. While the function of piccolo at synapses of the central nervous system has been intensively investigated, the role of piccolino at IHC synapses remains unclear. In this study, we characterize the structure and function of IHC synapses in piccolo gene-trap mutant rats (Pclogt/gt ). We find a mild hearing deficit with elevated thresholds and reduced amplitudes of auditory brainstem responses. Ca2+ channel distribution and ribbon morphology are altered in apical IHCs, while their presynaptic function seems to be unchanged. We conclude that piccolino contributes to the AZ organization in IHCs and is essential for normal hearing.


Assuntos
Células Ciliadas Auditivas Internas , Neuropeptídeos , Ratos , Animais , Audição/fisiologia , Sinapses/fisiologia , Cóclea , Gânglio Espiral da Cóclea/metabolismo , Proteínas do Citoesqueleto/metabolismo
5.
Elife ; 112022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562477

RESUMO

Ribbon synapses of cochlear inner hair cells (IHCs) are specialized to indefatigably transmit sound information at high rates. To understand the underlying mechanisms, structure-function analysis of the active zone (AZ) of these synapses is essential. Previous electron microscopy studies of synaptic vesicle (SV) dynamics at the IHC AZ used potassium stimulation, which limited the temporal resolution to minutes. Here, we established optogenetic IHC stimulation followed by quick freezing within milliseconds and electron tomography to study the ultrastructure of functional synapse states with good temporal resolution in mice. We characterized optogenetic IHC stimulation by patch-clamp recordings from IHCs and postsynaptic boutons revealing robust IHC depolarization and neurotransmitter release. Ultrastructurally, the number of docked SVs increased upon short (17-25 ms) and long (48-76 ms) light stimulation paradigms. We did not observe enlarged SVs or other morphological correlates of homotypic fusion events. Our results indicate a rapid recruitment of SVs to the docked state upon stimulation and suggest that univesicular release prevails as the quantal mechanism of exocytosis at IHC ribbon synapses.


Assuntos
Tomografia com Microscopia Eletrônica , Optogenética , Camundongos , Animais , Sinapses/fisiologia , Vesículas Sinápticas/ultraestrutura , Células Ciliadas Auditivas Internas/fisiologia , Exocitose/fisiologia
6.
Mol Cell Neurosci ; 120: 103720, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35288271

RESUMO

The mammalian cochlea is a snail-shaped structure deeply that is embedded in the temporal bone and harbors the auditory sensory epithelium - the organ of Corti. Since the discovery of this remarkable hearing organ in the middle of the 19th century, generations of anatomists and physiologists have been attracted to study the structural and functional details of this intricate and delicate structure and thereby contributed to establishing our current understanding of peripheral sound encoding. Since these early days, the continued development of novel imaging technologies - both on light and electron microscopic level - has driven the auditory research field and now enables the visualization of cochlear structures across multiple scales with unprecedented clarity and exquisite detail. To honor these achievements, this review aims to provide a concise overview of current multi-scale imaging methodologies to investigate cochlear anatomy and cellular function in the peripheral auditory pathway. For this purpose, we will outline the technological concepts underlying these techniques - ranging from label-free to label-containing approaches - highlight their respective strengths and limitations and provide specific examples of their use in modern auditory research. We will focus on traditional as well as less conventional imaging techniques that present essential tools for unraveling the protein composition, nanoscale assembly, and physiology of the first auditory synapse and associated structures. In addition, we will introduce novel non-invasive large-scale methodologies that allow for high-resolution in situ imaging of the structurally-unperturbed cochlea and point out potential future applications. In combination, these techniques allow for a comprehensive multi-scale analysis of cochlear structure and function.


Assuntos
Cóclea , Audição , Animais , Audição/fisiologia , Mamíferos , Sinapses
7.
Physiol Rev ; 102(1): 269-318, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727002

RESUMO

Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.


Assuntos
Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Glutamatos/metabolismo , Humanos , Neurônios/fisiologia
8.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34486665

RESUMO

Axonal survival and growth requires signalling from tropomyosin receptor kinases (Trks). To transmit their signals, receptor-ligand complexes are endocytosed and undergo retrograde trafficking to the soma, where downstream signalling occurs. Vesicles transporting neurotrophic receptors to the soma are reported to be Rab7-positive late endosomes and/or multivesicular bodies (MVBs), where receptors localize within so-called intraluminal vesicles (herein Rab7 corresponds to Rab7A unless specified otherwise). Therefore, one challenging question is how downstream signalling is possible given the insulating properties of intraluminal vesicles. In this study, we report that Rab7-positive endosomes and MVBs retrieve TrkA (also known as NTRK1) through tubular microdomains. Interestingly, this phenotype is absent for the EGF receptor. Furthermore, we found that endophilinA1, endophilinA2 and endophilinA3, together with WASH1 (also known as WASHC1), are involved in the tubulation process. In Charcot-Marie-Tooth disease 2B (CMT2B), a neuropathy of the peripheral nervous system, this tubulating mechanism is disrupted. In addition, the ability to tubulate correlates with the phosphorylation levels of TrkA as well as with neurite length in neuronal cultures from dorsal root ganglia. In all, we report a new retrieval mechanism of late Rab7-positive endosomes, which enables TrkA signalling and sheds new light onto how neurotrophic signalling is disrupted in CMT2B. This article has an associated First Person interview with the first author of the paper.


Assuntos
Doença de Charcot-Marie-Tooth , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Endossomos/metabolismo , Humanos , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Neurosci ; 41(37): 7742-7767, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34353898

RESUMO

Rab-interacting molecule (RIM)-binding protein 2 (BP2) is a multidomain protein of the presynaptic active zone (AZ). By binding to RIM, bassoon (Bsn), and voltage-gated Ca2+ channels (CaV), it is considered to be a central organizer of the topography of CaV and release sites of synaptic vesicles (SVs) at the AZ. Here, we used RIM-BP2 knock-out (KO) mice and their wild-type (WT) littermates of either sex to investigate the role of RIM-BP2 at the endbulb of Held synapse of auditory nerve fibers (ANFs) with bushy cells (BCs) of the cochlear nucleus, a fast relay of the auditory pathway with high release probability. Disruption of RIM-BP2 lowered release probability altering short-term plasticity and reduced evoked EPSCs. Analysis of SV pool dynamics during high-frequency train stimulation indicated a reduction of SVs with high release probability but an overall normal size of the readily releasable SV pool (RRP). The Ca2+-dependent fast component of SV replenishment after RRP depletion was slowed. Ultrastructural analysis by superresolution light and electron microscopy revealed an impaired topography of presynaptic CaV and a reduction of docked and membrane-proximal SVs at the AZ. We conclude that RIM-BP2 organizes the topography of CaV, and promotes SV tethering and docking. This way RIM-BP2 is critical for establishing a high initial release probability as required to reliably signal sound onset information that we found to be degraded in BCs of RIM-BP2-deficient mice in vivoSIGNIFICANCE STATEMENT Rab-interacting molecule (RIM)-binding proteins (BPs) are key organizers of the active zone (AZ). Using a multidisciplinary approach to the calyceal endbulb of Held synapse that transmits auditory information at rates of up to hundreds of Hertz with submillisecond precision we demonstrate a requirement for RIM-BP2 for normal auditory signaling. Endbulb synapses lacking RIM-BP2 show a reduced release probability despite normal whole-terminal Ca2+ influx and abundance of the key priming protein Munc13-1, a reduced rate of SV replenishment, as well as an altered topography of voltage-gated (CaV)2.1 Ca2+ channels, and fewer docked and membrane proximal synaptic vesicles (SVs). This hampers transmission of sound onset information likely affecting downstream neural computations such as of sound localization.


Assuntos
Canais de Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
10.
iScience ; 24(4): 102282, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33851098

RESUMO

Endbulbs of Held are located in the anteroventral cochlear nucleus and present the first central synapses of the auditory pathway. During development, endbulbs mature functionally to enable rapid and powerful synaptic transmission with high temporal precision. This process is accompanied by morphological changes of endbulb terminals. Loss of the hair cell-specific protein otoferlin (Otof) abolishes neurotransmission in the cochlea and results in the smaller endbulb of Held terminals. Thus, peripheral hearing impairment likely also leads to alterations in the morphological synaptic vesicle (SV) pool size at individual endbulb of Held active zones (AZs). Here, we investigated endbulb AZs in pre-hearing, young, and adult wild-type and Otof -/- mice. During maturation, SV numbers at endbulb AZs increased in wild-type mice but were found to be reduced in Otof -/ - mice. The SV population at a distance of 0-15 nm was most strongly affected. Finally, overall SV diameters decreased in Otof -/- animals during maturation.

11.
Nat Commun ; 11(1): 3208, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587250

RESUMO

Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in 'mini-syncytia'. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding.


Assuntos
Cóclea , Células Ciliadas Auditivas Internas , Audição/fisiologia , Animais , Sinalização do Cálcio , Cóclea/citologia , Cóclea/inervação , Nervo Coclear/metabolismo , Tomografia com Microscopia Eletrônica , Células Gigantes , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/fisiologia , Camundongos , Técnicas de Patch-Clamp , Roedores/fisiologia , Sinapses/metabolismo
12.
J Cell Sci ; 133(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31843760

RESUMO

High-throughput neurotransmission at ribbon synapses of cochlear inner hair cells (IHCs) requires tight coupling of neurotransmitter release and balanced recycling of synaptic vesicles (SVs) as well as rapid restoration of release sites. Here, we examined the role of the adaptor protein AP180 (also known as SNAP91) for IHC synaptic transmission by comparing AP180-knockout (KO) and wild-type mice using high-pressure freezing and electron tomography, confocal microscopy, patch-clamp membrane capacitance measurements and systems physiology. AP180 was found predominantly at the synaptic pole of IHCs. AP180-deficient IHCs had severely reduced SV numbers, slowed endocytic membrane retrieval and accumulated endocytic intermediates near ribbon synapses, indicating that AP180 is required for clathrin-dependent endocytosis and SV reformation in IHCs. Moreover, AP180 deletion led to a high prevalence of SVs in a multi-tethered or docked state after stimulation, a reduced rate of SV replenishment and a hearing impairment. We conclude that, in addition to its role in clathrin recruitment, AP180 contributes to release site clearance in IHCs.This article has an associated First Person interview with the first author of the paper.


Assuntos
Clatrina/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Transmissão Sináptica/genética , Animais , Camundongos
13.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052288

RESUMO

A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.


Assuntos
Citoesqueleto/metabolismo , Exocitose , Células Receptoras Sensoriais/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Citoesqueleto/ultraestrutura , Humanos , Células Receptoras Sensoriais/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 116(13): 6415-6424, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867284

RESUMO

Ribbon synapses of cochlear inner hair cells (IHCs) undergo molecular assembly and extensive functional and structural maturation before hearing onset. Here, we characterized the nanostructure of IHC synapses from late prenatal mouse embryo stages (embryonic days 14-18) into adulthood [postnatal day (P)48] using electron microscopy and tomography as well as optical nanoscopy of apical turn organs of Corti. We find that synaptic ribbon precursors arrive at presynaptic active zones (AZs) after afferent contacts have been established. These ribbon precursors contain the proteins RIBEYE and piccolino, tether synaptic vesicles and their delivery likely involves active, microtubule-based transport pathways. Synaptic contacts undergo a maturational transformation from multiple small to one single, large AZ. This maturation is characterized by the fusion of ribbon precursors with membrane-anchored ribbons that also appear to fuse with each other. Such fusion events are most frequently encountered around P12 and hence, coincide with hearing onset in mice. Thus, these events likely underlie the morphological and functional maturation of the AZ. Moreover, the postsynaptic densities appear to undergo a similar refinement alongside presynaptic maturation. Blockwise addition of ribbon material by fusion as found during AZ maturation might represent a general mechanism for modulating ribbon size.


Assuntos
Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Sinapses/fisiologia , Animais , Cóclea/ultraestrutura , Células Ciliadas Auditivas Internas/ultraestrutura , Células Ciliadas Vestibulares/ultraestrutura , Audição/fisiologia , Camundongos/embriologia , Microscopia Eletrônica , Modelos Animais , Sinapses/ultraestrutura , Vesículas Sinápticas , Tomografia
15.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30733243

RESUMO

Ribbon synapses of cochlear inner hair cells (IHCs) operate with high rates of neurotransmission; yet, the molecular regulation of synaptic vesicle (SV) recycling at these synapses remains poorly understood. Here, we studied the role of endophilins-A1-3, endocytic adaptors with curvature-sensing and curvature-generating properties, in mouse IHCs. Single-cell RT-PCR indicated the expression of endophilins-A1-3 in IHCs, and immunoblotting confirmed the presence of endophilin-A1 and endophilin-A2 in the cochlea. Patch-clamp recordings from endophilin-A-deficient IHCs revealed a reduction of Ca2+ influx and exocytosis, which we attribute to a decreased abundance of presynaptic Ca2+ channels and impaired SV replenishment. Slow endocytic membrane retrieval, thought to reflect clathrin-mediated endocytosis, was impaired. Otoferlin, essential for IHC exocytosis, co-immunoprecipitated with purified endophilin-A1 protein, suggestive of a molecular interaction that might aid exocytosis-endocytosis coupling. Electron microscopy revealed lower SV numbers, but an increased occurrence of coated structures and endosome-like vacuoles at IHC active zones. In summary, endophilins regulate Ca2+ influx and promote SV recycling in IHCs, likely via coupling exocytosis to endocytosis, and contributing to membrane retrieval and SV reformation.


Assuntos
Aciltransferases/fisiologia , Cálcio/metabolismo , Exocitose/fisiologia , Células Ciliadas Auditivas/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Cóclea/citologia , Cóclea/fisiologia , Endocitose , Feminino , Células Ciliadas Auditivas/citologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transmissão Sináptica
16.
EMBO Rep ; 19(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201800

RESUMO

The afferent inner hair cell synapse harbors the synaptic ribbon, which ensures a constant vesicle supply. Synaptic vesicles (SVs) are arranged in morphologically discernable pools, linked via filaments to the ribbon or the presynaptic membrane. We propose that filaments play a major role in SV resupply and exocytosis at the ribbon. Using advanced electron microscopy, we demonstrate that SVs are organized in sub-pools defined by the filament number per vesicle and its connections. Upon stimulation, SVs increasingly linked to other vesicles and to the ribbon, whereas single-tethered SVs dominated at the membrane. Mutant mice for the hair cell protein otoferlin (pachanga, OtofPga/Pga ) are profoundly deaf with reduced sustained release, serving as a model to investigate the SV replenishment at IHCs. Upon stimulation, multiple-tethered and docked vesicles (rarely observed in wild-type) accumulated at OtofPga/Pga active zones due to an impairment downstream of docking. Conclusively, vesicles are organized in sub-pools at ribbon-type active zones by filaments to support vesicle supply, transport, and finally release.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Sinapses/ultraestrutura , Vesículas Sinápticas/fisiologia , Animais , Membrana Celular/metabolismo , Surdez/genética , Exocitose , Células Ciliadas Auditivas Internas/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Mutação , Sinapses/fisiologia , Vesículas Sinápticas/ultraestrutura
17.
Elife ; 72018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29328020

RESUMO

We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation.


Assuntos
Proteínas de Ligação a DNA/deficiência , Células Ciliadas Auditivas Internas/fisiologia , Audição , Fosfoproteínas/deficiência , Gânglio Espiral da Cóclea/citologia , Sinapses/fisiologia , Estimulação Acústica , Oxirredutases do Álcool , Animais , Proteínas Correpressoras , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Microscopia de Fluorescência , Sinapses/ultraestrutura
18.
Front Cell Neurosci ; 11: 334, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163046

RESUMO

Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca2+-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)-a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3-that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca2+-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca2+-influx-exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.

19.
Artigo em Inglês | MEDLINE | ID: mdl-29118709

RESUMO

Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ) proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs), but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus-the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo ("Piccolino") present at the upstream ribbon synapses of cochlear inner hair cells (IHC), is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC), while eEPSC kinetics as well as miniature EPSCs (mEPSCs) remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP) of synaptic vesicles (SV), as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability, while the synapses still exhibited the reduced RRP, and the impairment in SV replenishment was exacerbated. We propose additive roles of Piccolo and Bassoon in SV replenishment which in turn influences the organization and size of the RRP, and an additional role of Bassoon in regulation of release probability.

20.
EMBO J ; 35(23): 2519-2535, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729456

RESUMO

The multi-C2 domain protein otoferlin is required for hearing and mutated in human deafness. Some OTOF mutations cause a mild elevation of auditory thresholds but strong impairment of speech perception. At elevated body temperature, hearing is lost. Mice homozygous for one of these mutations, OtofI515T/I515T, exhibit a moderate hearing impairment involving enhanced adaptation to continuous or repetitive sound stimulation. In OtofI515T/I515T inner hair cells (IHCs), otoferlin levels are diminished by 65%, and synaptic vesicles are enlarged. Exocytosis during prolonged stimulation is strongly reduced. This indicates that otoferlin is critical for the reformation of properly sized and fusion-competent synaptic vesicles. Moreover, we found sustained exocytosis and sound encoding to scale with the amount of otoferlin at the plasma membrane. We identified a 20 amino acid motif including an RXR motif, presumably present in human but not in mouse otoferlin, which reduces the plasma membrane abundance of Ile515Thr-otoferlin. Together, this likely explains the auditory synaptopathy at normal temperature and the temperature-sensitive deafness in humans carrying the Ile515Thr mutation.


Assuntos
Fadiga Auditiva , Células Ciliadas Auditivas/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Estabilidade Proteica/efeitos da radiação , Sinapses/metabolismo , Animais , Exocitose , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Proteínas Mutantes/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...