Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0187153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073228

RESUMO

PURPOSE: Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter) transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS. MATERIALS AND METHODS: A fully-removable (55 cm diameter) birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany). Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers. RESULTS: The combined (volume-transmit, local receive array) setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum) compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%); and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr) maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable. CONCLUSION: This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imageamento por Ressonância Magnética/métodos , Isótopos de Fósforo , Razão Sinal-Ruído
2.
Invest Radiol ; 48(3): 158-66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23344515

RESUMO

OBJECTIVES: The aim of this study was to evaluate free-breathing single-shot real-time cine imaging for functional cardiac imaging at 3 T with increased spatial resolution. Special emphasis of this study was placed on the influence of parallel imaging techniques. MATERIALS AND METHODS: Gradient echo phantom images were acquired with GRAPPA and modified SENSE reconstruction using both integrated and separate reference scans as well as TGRAPPA and TSENSE. In vivo measurements were performed for GRAPPA reconstruction with an integrated and a separate reference scan, as well as TGRAPPA using balanced steady-state free precession protocols. Three clinical protocols, rtLRInt (Tres = 51.3 milliseconds; voxel, 2.5 × 5.0 × 10 mm³), rtMRSep (Tres = 48.8 milliseconds; voxel, 1.9 × 3.1 × 10 mm³), and rtHRSep (Tres = 48.3 milliseconds; voxel, 1.6 × 2.6 × 10 mm), were investigated on 20 volunteers using GRAPPA reconstruction with internal as well as separate reference scans. End-diastolic volume, end-systolic volume, ejection fraction, peak ejection rate, peak filling rate, and myocardial mass were evaluated for the left ventricle and compared with an electrocardiogram-triggered segmented readout cine protocol used as standard of reference. All studies were performed at 3 T. RESULTS: Phantom and in vivo data demonstrate that the combination of GRAPPA reconstruction with a separate reference scan provides an optimal compromise of image quality as well as spatial and temporal resolution. Functional values (P values) for the standard of reference, rtLRInt, rtMRSep, and rtHRSep end-diastolic volume were 141 ± 24 mL, 138 ± 21 mL, 138 ± 19 mL, and 128 ± 33 mL, respectively (P = 0.7, 0.7, 0.4); end-systolic volume, 55 ± 15 mL, 61 ± 14 mL, 58 ± 12 mL, and 55 ± 20 mL, respectively (P = 0.23, 0.43, 0.62); ejection fraction, 61% ± 5%, 57% ± 5%, 58% ± 4%, and 56% ± 8%, respectively (P = 0.01, 0.11, 0.06); peak ejection rate, 481 ± 73 mL/s, 425 ± 62 mL/s, 434 ± 67 mL/s, and 381 ± 86 mL/s, respectively (P = 0.03, 0.04, 0.01); peak filling rate, 555 ± 80 mL/s, 480 ± 70 mL/s, 500 ± 70 mL/s, and 438 ± 108 mL/s, respectively (P= 0.007, 0.05, 0.004); and myocardial mass, 137 ± 26 g, 141 ± 25 g, 141 ± 23 g, and 130 ± 31 g, respectively (P = 0.62, 0.54, 0.99). CONCLUSIONS: Using a separate reference scan and high acceleration factors up to R = 6, single-shot real-time cardiac imaging offers adequate temporal and spatial resolution for accurate assessment of global left ventricular function in free breathing with short examination times.


Assuntos
Algoritmos , Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Suspensão da Respiração , Sistemas Computacionais , Humanos , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
3.
J Magn Reson Imaging ; 33(5): 1047-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21509860

RESUMO

PURPOSE: To use the contrast agent gadofosveset for absolute quantification of myocardial perfusion and compare it with gadobenate dimeglumine (Gd-BOPTA) using a high-resolution generalized autocalibrating partially parallel acquisition (GRAPPA) sequence. MATERIALS AND METHODS: Ten healthy volunteers were examined twice at two different dates with a first-pass perfusion examination at rest using prebolus technique. We used a 1.5 T scanner and a 32 channel heart-array coil with a steady-state free precession (SSFP) true fast imaging with steady state precession (trueFISP) GRAPPA sequence (acceleration-factor 3). Manual delineation of the myocardial contours was performed and absolute quantification was performed after baseline and contamination correction. At the first appointment, 1cc/4cc of the extracellular contrast agent Gd-BOPTA were administered, on the second date, 1cc/4cc of the blood pool contrast agent (CA) gadofosveset. At each date the examination was repeated after a 15-minute time interval. RESULTS: Using gadofosveset perfusion the value (in cc/g/min) at rest was 0.66 ± 0.25 (mean ± standard deviation) for the first, and 0.55 ± 0.24 for the second CA application; for Gd-BOPTA it was 0.62 ± 0.25 and 0.45 ± 0.23. No significant difference was found between the acquired perfusion values. The apparent mean residence time in the myocardium was 23 seconds for gadofosveset and 19.5 seconds for Gd-BOPTA. Neither signal-to-noise ratio (SNR) nor subjectively rated image contrast showed a significant difference. CONCLUSION: The application of gadofosveset for an absolute quantification of myocardial perfusion is possible. Yet the acquired perfusion values show no significant differences to those determined with Gd-BOPTA, maintained the same SNR and comparable perfusion values, and did not picture the expected concentration time-course for an intravasal CA in the first pass.


Assuntos
Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Adulto , Calibragem , Meios de Contraste/farmacologia , Feminino , Gadolínio/farmacologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Compostos Organometálicos/farmacologia , Perfusão , Fatores de Tempo
4.
J Magn Reson Imaging ; 30(3): 541-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19711408

RESUMO

PURPOSE: To assess the feasibility of half-Fourier-acquisition single-shot turbo spin-echo (HASTE) of the lung at 3 Tesla (T) using parallel imaging with a prototype of a 32-channel torso array coil, and to determine the optimum acceleration factor for the delineation of intrapulmonary anatomy. MATERIALS AND METHODS: Nine volunteers were examined on a 32-channel 3T MRI system using a prototype 32-channel-torso-array-coil. HASTE-MRI of the lung was acquired at both, end-inspiratory and end-expiratory breathhold with parallel imaging (Generalized autocalibrating partially parallel acquisitions = GRAPPA) using acceleration factors ranging between R = 1 (TE = 42 ms) and R = 6 (TE = 16 ms). The image quality of intrapulmonary anatomy and subjectively perceived noise level was analyzed by two radiologists in consensus. In addition quantitative measurements of the signal-to-noise ratio (SNR) of HASTE with different acceleration factors were assessed in phantom measurements. RESULTS: Using an acceleration factor of R = 4 image blurring was substantially reduced compared with lower acceleration factors resulting in sharp delineation of intrapulmonary structures in expiratory scans. For inspiratory scans an acceleration factor of 2 provided the best image quality. Expiratory scans had a higher subjectively perceived SNR than inspiratory scans. CONCLUSION: Using optimized multi-element coil geometry HASTE-MRI of the lung is feasible at 3T with acceleration factors up to 4. Compared with nonaccelerated acquisitions, shorter echo times and reduced image blurring are achieved. Expiratory scanning may be favorable to compensate for susceptibility associated signal loss at 3T.


Assuntos
Análise de Fourier , Aumento da Imagem/métodos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Magnetismo , Masculino , Variações Dependentes do Observador , Valores de Referência
5.
NMR Biomed ; 20(3): 326-34, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17451179

RESUMO

The advantages of array coil imaging in human whole-body MR systems are well known and have gained relevance in many applications and MR techniques. In the field of small-animal studies, this concept has become increasingly important. In this work, three different phased-array coils for performing MRI on mice are presented. For imaging at 300 MHz, a four-channel receive-only phased-array coil is introduced. One two-channel and a four-channel transmit/receive setup operating at 750 MHz show the feasibility of array coil imaging at 17.6 T. All of these coils show excellent performance and deliver high-quality MR images of mice.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Animais , Encéfalo , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Coluna Vertebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...