Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915480

RESUMO

PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.

2.
Dev Cell ; 59(5): 661-675.e7, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38290520

RESUMO

Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Masculino , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sêmen/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070766

RESUMO

PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA/metabolismo , Células-Tronco/metabolismo
4.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824876

RESUMO

PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of C. elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(A m B m ) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(A m B m ) is used to explore the functional significance of the LST-1-PUF partnership. Tethered LST-1 requires the partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs. Comparison of PUF-LST-1 and Pumilio-Nanos reveals fundamental molecular differences, making PUF-LST-1 a distinct paradigm for PUF partnerships. Summary statement: Partnerships between PUF RNA-binding proteins and intrinsically disordered proteins are essential for stem cell maintenance and RNA repression.

6.
Nat Commun ; 12(1): 5107, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429425

RESUMO

The ability to design a protein to bind specifically to a target RNA enables numerous applications, with the modular architecture of the PUF domain lending itself to new RNA-binding specificities. For each repeat of the Pumilio-1 PUF domain, we generate a library that contains the 8,000 possible combinations of amino acid substitutions at residues critical for RNA contact. We carry out yeast three-hybrid selections with each library against the RNA recognition sequence for Pumilio-1, with any possible base present at the position recognized by the randomized repeat. We use sequencing to score the binding of each variant, identifying many variants with highly repeat-specific interactions. From these data, we generate an RNA binding code specific to each repeat and base. We use this code to design PUF domains against 16 RNAs, and find that some of these domains recognize RNAs with two, three or four changes from the wild type sequence.


Assuntos
Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , RNA/química , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 12(1): 996, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579952

RESUMO

Cytoplasmic RNA-protein (RNP) granules have diverse biophysical properties, from liquid to solid, and play enigmatic roles in RNA metabolism. Nematode P granules are paradigmatic liquid droplet granules and central to germ cell development. Here we analyze a key P granule scaffolding protein, PGL-1, to investigate the functional relationship between P granule assembly and function. Using a protein-RNA tethering assay, we find that reporter mRNA expression is repressed when recruited to PGL-1. We determine the crystal structure of the PGL-1 N-terminal region to 1.5 Å, discover its dimerization, and identify key residues at the dimer interface. Mutations of those interface residues prevent P granule assembly in vivo, de-repress PGL-1 tethered mRNA, and reduce fertility. Therefore, PGL-1 dimerization lies at the heart of both P granule assembly and function. Finally, we identify the P granule-associated Argonaute WAGO-1 as crucial for repression of PGL-1 tethered mRNA. We conclude that P granule function requires both assembly and localized regulators.


Assuntos
Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , Células Germinativas/metabolismo , RNA Mensageiro/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Repressão Epigenética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Conformação Proteica , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(38): 23539-23547, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907940

RESUMO

RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3' terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.


Assuntos
RNA Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina
10.
Nature ; 582(7811): 283-288, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499657

RESUMO

Mobile genetic elements threaten genome integrity in all organisms. RDE-3 (also known as MUT-2) is a ribonucleotidyltransferase that is required for transposon silencing and RNA interference in Caenorhabditis elegans1-4. When tethered to RNAs in heterologous expression systems, RDE-3 can add long stretches of alternating non-templated uridine (U) and guanosine (G) ribonucleotides to the 3' termini of these RNAs (designated poly(UG) or pUG tails)5. Here we show that, in its natural context in C. elegans, RDE-3 adds pUG tails to targets of RNA interference, as well as to transposon RNAs. RNA fragments attached to pUG tails with more than 16 perfectly alternating 3' U and G nucleotides become gene-silencing agents. pUG tails promote gene silencing by recruiting RNA-dependent RNA polymerases, which use pUG-tailed RNAs (pUG RNAs) as templates to synthesize small interfering RNAs (siRNAs). Our results show that cycles of pUG RNA-templated siRNA synthesis and siRNA-directed pUG RNA biogenesis underlie double-stranded-RNA-directed transgenerational epigenetic inheritance in the C. elegans germline. We speculate that this pUG RNA-siRNA silencing loop enables parents to inoculate progeny against the expression of unwanted or parasitic genetic elements.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/parasitologia , Epigênese Genética/genética , Genoma/genética , Hereditariedade , Poli G/genética , Poli U/genética , RNA Mensageiro/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Nucleotidiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/metabolismo , Moldes Genéticos
11.
Genetics ; 214(1): 147-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740451

RESUMO

Stem cell regulation relies on extrinsic signaling from a niche plus intrinsic factors that respond and drive self-renewal within stem cells. A priori, loss of niche signaling and loss of the intrinsic self-renewal factors might be expected to have equivalent stem cell defects. Yet this simple prediction has not been borne out for most stem cells, including Caenorhabditis elegans germline stem cells (GSCs). The central regulators of C. elegans GSCs include extrinsically acting GLP-1/Notch signaling from the niche; intrinsically acting RNA-binding proteins in the PUF family, termed FBF-1 and FBF-2 (collectively FBF); and intrinsically acting PUF partner proteins that are direct Notch targets. Abrogation of either GLP-1/Notch signaling or its targets yields an earlier and more severe GSC defect than loss of FBF-1 and FBF-2, suggesting that additional intrinsic regulators must exist. Here, we report that those missing regulators are two additional PUF proteins, PUF-3 and PUF-11 Remarkably, an fbf-1fbf-2 ; puf-3puf-11 quadruple null mutant has a GSC defect virtually identical to that of a glp-1/Notch null mutant. PUF-3 and PUF-11 both affect GSC maintenance, both are expressed in GSCs, and epistasis experiments place them at the same position as FBF within the network. Therefore, action of PUF-3 and PUF-11 explains the milder GSC defect in fbf-1fbf-2 mutants. We conclude that a "PUF hub," comprising four PUF proteins and two PUF partners, constitutes the intrinsic self-renewal node of the C. elegans GSC RNA regulatory network. Discovery of this hub underscores the significance of PUF RNA-binding proteins as key regulators of stem cell maintenance.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Células Germinativas/citologia , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Autorrenovação Celular , Embrião não Mamífero , Epistasia Genética , Células Germinativas/metabolismo , Masculino , Mutação , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo
12.
Development ; 146(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31515205

RESUMO

PUF RNA-binding proteins have diverse roles in animal development, with a broadly conserved role in stem cells. Two paradigmatic PUF proteins, FBF-1 and FBF-2, promote both self-renewal and differentiation in the C. elegans germline. The LST-1 protein is a pivotal regulator of self-renewal and is oncogenic when mis-expressed. Here, we demonstrate that LST-1 self-renewal activity resides within a predicted disordered region that harbors two KXXL motifs. We find that the KXXL motifs mediate the binding of LST-1 to FBF, and that point mutations of these motifs abrogate LST-1 self-renewal activity. The LST-1-FBF partnership is therefore crucial to stem cell maintenance and is a key element in the FBF regulatory network. A distinct region within LST-1 determines its spatial expression and size of the GSC pool. Most importantly, the molecular understanding of how an IDR-rich protein works in an essential partnership with a conserved stem cell regulator and RNA-binding protein suggests broad new avenues for combinatorial control.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Células-Tronco/citologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Biológicos , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
13.
Nucleic Acids Res ; 47(16): 8770-8784, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31294800

RESUMO

PUF proteins, named for Drosophila Pumilio (PUM) and Caenorhabditis elegans fem-3-binding factor (FBF), recognize specific sequences in the mRNAs they bind and control. RNA binding by classical PUF proteins is mediated by a characteristic PUM homology domain (PUM-HD). The Puf1 and Puf2 proteins possess a distinct architecture and comprise a highly conserved subfamily among fungal species. Puf1/Puf2 proteins contain two types of RNA-binding domain: a divergent PUM-HD and an RNA recognition motif (RRM). They recognize RNAs containing UAAU motifs, often in clusters. Here, we report a crystal structure of the PUM-HD of a fungal Puf1 in complex with a dual UAAU motif RNA. Each of the two UAAU tetranucleotides are bound by a Puf1 PUM-HD forming a 2:1 protein-to-RNA complex. We also determined crystal structures of the Puf1 RRM domain that identified a dimerization interface. The PUM-HD and RRM domains act in concert to determine RNA-binding specificity: the PUM-HD dictates binding to UAAU, and dimerization of the RRM domain favors binding to dual UAAU motifs rather than a single UAAU. Cooperative action of the RRM and PUM-HD identifies a new mechanism by which multiple RNA-binding modules in a single protein collaborate to create a unique RNA-binding specificity.


Assuntos
RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Nat Methods ; 16(5): 437-445, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988468

RESUMO

Ribonucleotidyl transferases (rNTases) add untemplated ribonucleotides to diverse RNAs. We have developed TRAID-seq, a screening strategy in Saccharomyces cerevisiae to identify sequences added to a reporter RNA at single-nucleotide resolution by overexpressed candidate enzymes from different organisms. The rNTase activities of 22 previously unexplored enzymes were determined. In addition to poly(A)- and poly(U)-adding enzymes, we identified a cytidine-adding enzyme that is likely to be part of a two-enzyme system that adds CCA to tRNAs in a eukaryote; a nucleotidyl transferase that adds nucleotides to RNA without apparent nucleotide preference; and a poly(UG) polymerase, Caenorhabditis elegans MUT-2, that adds alternating uridine and guanosine nucleotides to form poly(UG) tails. MUT-2 is known to be required for certain forms of RNA silencing, and mutants of the enzyme that result in defective silencing did not add poly(UG) tails in our assay. We propose that MUT-2 poly(UG) polymerase activity is required to promote genome integrity and RNA silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Nucleotidiltransferases/genética , Interferência de RNA , RNA Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , Animais , Caenorhabditis elegans/enzimologia , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
15.
G3 (Bethesda) ; 9(1): 153-165, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30459181

RESUMO

Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Oogênese/genética , Proteínas de Ligação a RNA/genética , Espermatogênese/genética , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Feminino , Masculino , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Filogenia , Ligação Proteica/genética , Processos de Determinação Sexual/genética , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Células-Tronco/metabolismo
16.
Cell Rep ; 23(13): 3769-3775, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949762

RESUMO

FOG-3 is a master regulator of sperm fate in Caenorhabditis elegans and homologous to Tob/BTG proteins, which in mammals are monomeric adaptors that recruit enzymes to RNA binding proteins. Here, we determine the FOG-3 crystal structure and in vitro demonstrate that FOG-3 forms dimers that can multimerize. The FOG-3 multimeric structure has a basic surface potential, suggestive of binding nucleic acid. Consistent with that prediction, FOG-3 binds directly to nearly 1,000 RNAs in nematode spermatogenic germ cells. Most binding is to the 3' UTR, and most targets (94%) are oogenic mRNAs, even though assayed in spermatogenic cells. When tethered to a reporter mRNA, FOG-3 represses its expression. Together these findings elucidate the molecular mechanism of sperm fate specification and reveal the evolution of a protein from monomeric to multimeric form with acquisition of a distinct mode of mRNA repression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Espermatozoides/metabolismo , Regiões 3' não Traduzidas , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Dimerização , Masculino , Ligação Proteica , Multimerização Proteica , RNA/química , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Espermatogênese , Espermatozoides/citologia
17.
Methods Mol Biol ; 1649: 455-471, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29130216

RESUMO

Protein-RNA networks, in which a single protein binds and controls multiple mRNAs, are central in biological control. As a result, methods to identify protein-RNA interactions that occur in vivo are valuable. The "RNA Tagging" approach enables the investigator to unambiguously identify global protein-RNA interactions in vivo and is independent of protein purification, cross-linking, and radioactive labeling steps. Here, we provide a protocol to prepare high-throughput sequencing libraries for RNA Tagging experiments.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Fúngico/metabolismo , Magnetismo , Poli A/metabolismo , Reação em Cadeia da Polimerase , RNA Fúngico/isolamento & purificação , RNA Ribossômico/metabolismo , Transcrição Reversa , Saccharomyces cerevisiae/metabolismo
18.
Cell Syst ; 6(1): 125-135.e6, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29248374

RESUMO

Coenzyme Q (CoQ) is a redox-active lipid required for mitochondrial oxidative phosphorylation (OxPhos). How CoQ biosynthesis is coordinated with the biogenesis of OxPhos protein complexes is unclear. Here, we show that the Saccharomyces cerevisiae RNA-binding protein (RBP) Puf3p regulates CoQ biosynthesis. To establish the mechanism for this regulation, we employed a multi-omic strategy to identify mRNAs that not only bind Puf3p but also are regulated by Puf3p in vivo. The CoQ biosynthesis enzyme Coq5p is a critical Puf3p target: Puf3p regulates the abundance of Coq5p and prevents its detrimental hyperaccumulation, thereby enabling efficient CoQ production. More broadly, Puf3p represses a specific set of proteins involved in mitochondrial protein import, translation, and OxPhos complex assembly (pathways essential to prime mitochondrial biogenesis). Our data reveal a mechanism for post-transcriptionally coordinating CoQ production with OxPhos biogenesis, and they demonstrate the power of multi-omics for defining genuine targets of RBPs.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/enzimologia , Biogênese de Organelas , Fosforilação Oxidativa , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Ubiquinona/biossíntese
19.
PLoS Genet ; 13(12): e1007121, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29232700

RESUMO

Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive "stemness" and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Autorrenovação Celular/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Meiose/genética , RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...