Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 24(3): 221-225, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28112730

RESUMO

How do the key features of protein folding, elucidated from studies on native, isolated proteins, manifest in cotranslational folding on the ribosome? Using a well-characterized family of homologous α-helical proteins with a range of biophysical properties, we show that spectrin domains can fold vectorially on the ribosome and may do so via a pathway different from that of the isolated domain. We use cryo-EM to reveal a folded or partially folded structure, formed in the vestibule of the ribosome. Our results reveal that it is not possible to predict which domains will fold within the ribosome on the basis of the folding behavior of isolated domains; instead, we propose that a complex balance of the rate of folding, the rate of translation and the lifetime of folded or partly folded states will determine whether folding occurs cotranslationally on actively translating ribosomes.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Espectrina/química , Sequência de Aminoácidos , Fenômenos Biomecânicos , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Espectrina/ultraestrutura
2.
Cell Rep ; 17(11): 2943-2954, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974208

RESUMO

Members of the YidC/Oxa1/Alb3 family universally facilitate membrane protein biogenesis, via mechanisms that have thus far remained unclear. Here, we investigated two crucial functional aspects: the interaction of YidC with ribosome:nascent chain complexes (RNCs) and the structural dynamics of RNC-bound YidC in nanodiscs. We observed that a fully exposed nascent transmembrane domain (TMD) is required for high-affinity YidC:RNC interactions, while weaker binding may already occur at earlier stages of translation. YidC efficiently catalyzed the membrane insertion of nascent TMDs in both fluid and gel phase membranes. Cryo-electron microscopy and fluorescence analysis revealed a conformational change in YidC upon nascent chain insertion: the essential TMDs 2 and 3 of YidC were tilted, while the amphipathic helix EH1 relocated into the hydrophobic core of the membrane. We suggest that EH1 serves as a mechanical lever, facilitating a coordinated movement of YidC TMDs to trigger the release of nascent chains into the membrane.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Microscopia Crioeletrônica , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Ribossomos/genética , Ribossomos/ultraestrutura
3.
Cell Rep ; 12(10): 1533-40, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321634

RESUMO

At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Fúngicas/química , Dobramento de Proteína , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Escherichia coli , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Ribossomos/química , Termodinâmica , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/genética , Dedos de Zinco
4.
Elife ; 3: e03035, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25012291

RESUMO

The integration of most membrane proteins into the cytoplasmic membrane of bacteria occurs co-translationally. The universally conserved YidC protein mediates this process either individually as a membrane protein insertase, or in concert with the SecY complex. Here, we present a structural model of YidC based on evolutionary co-variation analysis, lipid-versus-protein-exposure and molecular dynamics simulations. The model suggests a distinctive arrangement of the conserved five transmembrane domains and a helical hairpin between transmembrane segment 2 (TM2) and TM3 on the cytoplasmic membrane surface. The model was used for docking into a cryo-electron microscopy reconstruction of a translating YidC-ribosome complex carrying the YidC substrate FOc. This structure reveals how a single copy of YidC interacts with the ribosome at the ribosomal tunnel exit and identifies a site for membrane protein insertion at the YidC protein-lipid interface. Together, these data suggest a mechanism for the co-translational mode of YidC-mediated membrane protein insertion.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Ribossomos/química , Sequência de Aminoácidos , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação de Hidrogênio , Cinética , Lipídeos/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Canais de Translocação SEC , Alinhamento de Sequência , Termodinâmica
5.
Nat Commun ; 5: 4103, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912953

RESUMO

The biogenesis of polytopic membrane proteins occurs co-translationally on ribosomes that are tightly bound to a membrane-embedded protein-conducting channel: the Sec-complex. The path that is followed by nascent proteins inside the ribosome and the Sec-complex is relatively well established; however, it is not clear what the fate of the N-terminal transmembrane domains (TMDs) of polytopic membrane proteins is when the C-terminal TMDs domains are not yet synthesized. Here, we present the sub-nanometer cryo-electron microscopy structure of an in vivo generated ribosome-SecY complex that carries a membrane insertion intermediate of proteorhodopsin (PR). The structure reveals a pre-opened Sec-complex and the first two TMDs of PR already outside the SecY complex directly in front of its proposed lateral gate. Thus, our structure is in agreement with positioning of N-terminal TMDs at the periphery of SecY, and in addition, it provides clues for the molecular mechanism underlying membrane protein topogenesis.


Assuntos
Membrana Celular/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Canais de Translocação SEC
6.
Mol Microbiol ; 91(2): 408-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24261830

RESUMO

The marine Gram-negative bacteria Rhodopirellula baltica and Oceanicaulis alexandrii have, in contrast to Escherichia coli, membrane insertases with extended positively charged C-terminal regions similar to the YidC homologues in mitochondria and Gram-positive bacteria. We have found that chimeric forms of E. coli YidC fused to the C-terminal YidC regions from the marine bacteria mediate binding of YidC to ribosomes and therefore may have a functional role for targeting a nascent protein to the membrane. Here, we show in E. coli that an extended C-terminal region of YidC can compensate for a loss of SRP-receptor function in vivo. Furthermore, the enhanced affinity of the ribosome to the chimeric YidC allows the isolation of a ribosome nascent chain complex together with the C-terminally elongated YidC chimera. This complex was visualized at 8.6 Šby cryo-electron microscopy and shows a close contact of the ribosome and a YidC monomer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Planctomycetales/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Ribossomos/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Planctomycetales/genética , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
7.
J Struct Biol ; 182(2): 59-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23454482

RESUMO

Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction are extensively used to reveal structural information on macromolecular complexes. Aiming at the highest achievable resolution, state of the art electron microscopes automatically acquire thousands of high-quality micrographs. Particles are detected on and boxed out from each micrograph using fully- or semi-automated approaches. However, the obtained particles still require laborious manual post-picking classification, which is one major bottleneck for single particle analysis of large datasets. We introduce MAPPOS, a supervised post-picking strategy for the classification of boxed particle images, as additional strategy adding to the already efficient automated particle picking routines. MAPPOS employs machine learning techniques to train a robust classifier from a small number of characteristic image features. In order to accurately quantify the performance of MAPPOS we used simulated particle and non-particle images. In addition, we verified our method by applying it to an experimental cryo-EM dataset and comparing the results to the manual classification of the same dataset. Comparisons between MAPPOS and manual post-picking classification by several human experts demonstrated that merely a few hundred sample images are sufficient for MAPPOS to classify an entire dataset with a human-like performance. MAPPOS was shown to greatly accelerate the throughput of large datasets by reducing the manual workload by orders of magnitude while maintaining a reliable identification of non-particle images.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Substâncias Macromoleculares/ultraestrutura , Conformação Molecular , Software , Área Sob a Curva , Inteligência Artificial , Simulação por Computador , Escherichia coli , Ribossomos/ultraestrutura
8.
Nat Struct Mol Biol ; 20(1): 23-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202586

RESUMO

Ribosome-associated chaperones act in early folding events during protein synthesis. Structural information is available for prokaryotic chaperones (such as trigger factor), but structural understanding of these processes in eukaryotes lags far behind. Here we present structural analyses of the eukaryotic ribosome-associated complex (RAC) from Saccharomyces cerevisiae and Chaetomium thermophilum, consisting of heat-shock protein 70 (Hsp70) Ssz1 and the Hsp40 Zuo1. RAC is an elongated complex that crouches over the ribosomal tunnel exit and seems to be stabilized in a distinct conformation by expansion segment ES27. A unique α-helical domain in Zuo1 mediates ribosome interaction of RAC near the ribosomal proteins L22e and L31e and ribosomal RNA helix H59. The crystal structure of the Ssz1 ATPase domain bound to ATP-Mg²âº explains its catalytic inactivity and suggests that Ssz1 may act before the RAC-associated chaperone Ssb. Our study offers insights into the interplay between RAC, the ER membrane-integrated Hsp40-type protein ERj1 and the signal-recognition particle.


Assuntos
Chaetomium/química , Proteínas Fúngicas/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Chaetomium/genética , Chaetomium/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(42): 16900-5, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027944

RESUMO

Ribosome protection proteins (RPPs) confer tetracycline resistance by binding to the ribosome and chasing the drug from its binding site. The current model for the mechanism of action of RPPs proposes that drug release is indirect and achieved via conformational changes within the drug-binding site induced upon binding of the RPP to the ribosome. Here we report a cryo-EM structure of the RPP TetM in complex with the 70S ribosome at 7.2-Å resolution. The structure reveals the contacts of TetM with the ribosome, including interaction between the conserved and functionally critical C-terminal extension of TetM and the decoding center of the small subunit. Moreover, we observe direct interaction between domain IV of TetM and the tetracycline binding site and identify residues critical for conferring tetracycline resistance. A model is presented whereby TetM directly dislodges tetracycline to confer resistance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Modelos Moleculares , Tetraciclina , Microscopia Crioeletrônica , Primers do DNA/genética , Processamento de Imagem Assistida por Computador , Mutagênese , Ribossomos/metabolismo
10.
Nature ; 482(7386): 501-6, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22358840

RESUMO

Ribosome-driven protein biosynthesis is comprised of four phases: initiation, elongation, termination and recycling. In bacteria, ribosome recycling requires ribosome recycling factor and elongation factor G, and several structures of bacterial recycling complexes have been determined. In the eukaryotic and archaeal kingdoms, however, recycling involves the ABC-type ATPase ABCE1 and little is known about its structural basis. Here we present cryo-electron microscopy reconstructions of eukaryotic and archaeal ribosome recycling complexes containing ABCE1 and the termination factor paralogue Pelota. These structures reveal the overall binding mode of ABCE1 to be similar to canonical translation factors. Moreover, the iron-sulphur cluster domain of ABCE1 interacts with and stabilizes Pelota in a conformation that reaches towards the peptidyl transferase centre, thus explaining how ABCE1 may stimulate peptide-release activity of canonical termination factors. Using the mechanochemical properties of ABCE1, a conserved mechanism in archaea and eukaryotes is suggested that couples translation termination to recycling, and eventually to re-initiation.


Assuntos
Evolução Molecular , Pyrococcus furiosus/química , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Endorribonucleases/química , Endorribonucleases/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Movimento , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Pyrococcus furiosus/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...