Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 20(20): 5650-6, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11598008

RESUMO

Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo- and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature-sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p-dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPgammaS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.


Assuntos
Ácido Egtázico/análogos & derivados , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vacúolos/fisiologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Alelos , Quelantes/farmacologia , Ácido Egtázico/farmacologia , Proteínas Fúngicas/genética , Inibidores de Dissociação do Nucleotídeo Guanina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Cinética , Substâncias Macromoleculares , Fusão de Membrana , Transporte Proteico , Proteínas Recombinantes de Fusão/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/farmacologia , Proteínas rho de Ligação ao GTP/genética , Inibidores da Dissociação do Nucleotídeo Guanina rho-Específico
2.
EMBO J ; 20(15): 4035-40, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11483507

RESUMO

In vitro homotypic fusion of yeast vacuoles occurs in three stages: priming, the Sec18 (NSF)-mediated changes that precede vacuole association; docking, the Ypt7 and SNARE-mediated pairing of vacuoles; and fusion, mediated by calmodulin/V0/t-SNARE interactions. Defects in catalysts of each stage result in fragmented (unfused) vacuoles. Strains with deletions in any of ERG genes 3-6, lacking normal ergosterol biosynthesis, have fragmented vacuoles. The ergosterol ligands filipin, nystatin and amphotericin B block the in vitro fusion of vacuoles from wild-type cells. Each of these inhibitors acts at the priming stage to inhibit Sec17p release from vacuoles. A reversible delay in Sec18p action prevents vacuoles from acquiring resistance to any of these three drugs, confirming that their action is on the normal fusion pathway. Ergosterol or cholesterol delivery to wild-type vacuoles stimulates their in vitro fusion, and the in vitro fusion of ergDelta vacuoles requires added sterol. The need for ergosterol for vacuole priming underscores the role of lipids in organizing the membrane elements of this complex reaction.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Metiltransferases/genética , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Vacúolos/fisiologia
3.
EMBO J ; 20(10): 2472-9, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11350936

RESUMO

The Tat (twin-arginine translocation) pathway is a Sec-independent mechanism for translocating folded preproteins across or into the inner membrane of Escherichia coli. To study Tat translocation, we sought an in vitro translocation assay using purified inner membrane vesicles and in vitro synthesized substrate protein. While membrane vesicles derived from wild-type cells translocate the Sec-dependent substrate proOmpA, translocation of a Tat-dependent substrate, SufI, was not detected. We established that in vivo overexpression of SufI can saturate the Tat translocase, and that simultaneous overexpression of TatA, B and C relieves this SufI saturation. Using membrane vesicles derived from cells overexpressing TatABC, in vitro translocation of SufI was detected. Like translocation in vivo, translocation of SufI in vitro requires TatABC, an intact membrane potential and the twin-arginine targeting motif within the signal peptide of SUFI: In contrast to Sec translocase, we find that Tat translocase does not require ATP. The development of an in vitro translocation assay is a prerequisite for further biochemical investigations of the mechanism of translocation, substrate recognition and translocase structure.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana Transportadoras , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Biossíntese de Proteínas
4.
EMBO J ; 19(24): 6713-20, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11118206

RESUMO

Homotypic vacuole fusion occurs by sequential priming, docking and fusion reactions. Priming frees the HOPS complex (Vps 11, 16, 18, 33, 39 and 41) to activate Ypt7p for docking. Here we explore the roles of the GDP and GTP states of Ypt7p using Gdi1p (which extracts Ypt7:GDP), Gyp7p (a GTPase-activating protein for Ypt7p:GTP), GTPgammaS or GppNHp (non-hydrolyzable nucleotides), and mutant forms of Ypt7p that favor either GTP or GDP states. GDP-bound Ypt7p on isolated vacuoles can be extracted by Gdi1p, although only the GTP-bound state allows docking. Ypt7p is converted to the GTP-bound state after priming and stably associates with HOPS. Gyp7p can cause Ypt7p to hydrolyze bound GTP to GDP, driving HOPS release and accelerating Gdi1p-mediated release of Ypt7p. Ypt7p extraction does not inhibit the Ca(2+)-triggered cascade that leads to fusion. However, in the absence of Ypt7p, fusion is still sensitive to GTPgammaS and GppNHp, indicating that there is a second specific GTPase that regulates the calcium flux and hence fusion. Thus, two GTPases sequentially govern vacuole docking and fusion.


Assuntos
Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Cálcio/fisiologia , Sinalização do Cálcio , Proteínas Fúngicas/metabolismo , Genótipo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Guanosina Trifosfato/metabolismo , Guanilil Imidodifosfato/farmacologia , Cinética , Fusão de Membrana/efeitos dos fármacos , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
5.
Annu Rev Biochem ; 69: 247-75, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10966459

RESUMO

Homotypic (self) fusion of yeast vacuoles, which is essential for the low copy number of this organelle, uses catalytic elements similar to those used in heterotypic vesicular trafficking reactions between different organelles throughout nature. The study of vacuole inheritance has benefited from the ease of vacuole isolation, the availability of the yeast genome sequence and numerous mutants, and from a rapid, quantitative in vitro assay of fusion. The soluble proteins and small molecules that support fusion are being defined, conserved membrane proteins that catalyze the reaction have been identified, and the vacuole membrane has been solubilized and reconstituted into fusion-competent proteoliposomes, allowing the eventual purification of all needed factors. Studies of homotypic vacuole fusion have suggested a modified paradigm of membrane fusion in which integral membrane proteins termed "SNAREs" can form stable complexes in cis (when on the same membrane) as well as in trans (when anchored to opposing membranes). Chaperones (NSF/Sec18p, LMA1, and -SNAP/Sec17p) disassemble cis-SNARE complexes to prepare for the docking of organelles rather than to drive fusion. The specificity of organelle docking resides in a cascade of trans-interactions (involving Rab-like GTPases), "tethering factors," and trans-SNARE pairing. Fusion itself, the mixing of the membrane bilayers and the organelle contents, is triggered by calcium signaling.


Assuntos
Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Animais , Retículo Endoplasmático/fisiologia , Endossomos/fisiologia , Exocitose/fisiologia , Complexo de Golgi/fisiologia , Mamíferos , Fusão de Membrana/fisiologia , Mitose/fisiologia , Modelos Biológicos , Organelas/fisiologia , Saccharomyces cerevisiae/genética , Transmissão Sináptica/fisiologia
6.
Proc Natl Acad Sci U S A ; 97(17): 9402-7, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10944212

RESUMO

Yeast vacuoles undergo priming, docking, and homotypic fusion, although little has been known of the connections between these reactions. Vacuole-associated Vam2p and Vam6p (Vam2/6p) are components of a 65S complex containing SNARE proteins. Upon priming by Sec18p/NSF and ATP, Vam2/6p is released as a 38S subcomplex that binds Ypt7p to initiate docking. We now report that the 38S complex consists of both Vam2/6p and the class C Vps proteins [Reider, S. E. and Emr, S. D. (1997) Mol. Biol. Cell 8, 2307-2327]. This complex includes Vps33p, a member of the Sec1 family of proteins that bind t-SNAREs. We term this 38S complex HOPS, for homotypic fusion and vacuole protein sorting. This unexpected finding explains how Vam2/6p associates with SNAREs and provides a mechanistic link of the class C Vps proteins to Ypt/Rab action. HOPS initially associates with vacuole SNAREs in "cis" and, after release by priming, hops to Ypt7p, activating this Ypt/Rab switch to initiate docking.


Assuntos
Proteínas Fúngicas/metabolismo , Fusão de Membrana , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Anticorpos/farmacologia , Proteínas de Transporte/classificação , Proteínas de Transporte/metabolismo , Centrifugação com Gradiente de Concentração , Proteínas Fúngicas/classificação , Substâncias Macromoleculares , Fusão de Membrana/efeitos dos fármacos , Proteínas de Membrana/classificação , Proteínas de Membrana/metabolismo , Testes de Precipitina , Ligação Proteica , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Vacúolos/química , Vacúolos/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/genética
7.
EMBO J ; 19(16): 4393-401, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10944122

RESUMO

SecA insertion and deinsertion through SecYEG drive preprotein translocation at the Escherichia coli inner membrane. We present three assessments of the theory that oligomers of SecYEG might form functional translocation sites. (i) Formaldehyde cross- linking of translocase reveals cross-links between SecY, SecE and SecG, but not higher order oligomers. (ii) Cross-linking of membranes containing unmodified SecE and hemagglutinin-tagged SecE (SecE(HA)) reveals cross-links between SecY and SecE and between SecY and SecE(HA). However, anti-HA immunoprecipitates contain neither untagged SecE nor SecY cross-linked to SecE. (iii) Membranes containing similar amounts of SecE and SecE(HA) were saturated with translocation intermediate (I(29)) and detergent solubilized. Anti-HA immunoprecipitation of I(29) required SecYE(HA)G and SecA, yet untagged SecE was not present in this translocation complex. Likewise, anti-HA immunoprecipitates of membranes containing equal amounts of SecY and SecY(HA) were found to contain SecY(HA) but not SecY. Both immunoprecipitates contain more moles of I(29) than of the untagged subunit, again suggesting that translocation intermediates are not engaged with multiple copies of SecYEG. These studies suggest that the active form of preprotein translocase is monomeric SecYEG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Translocação Bacteriana , Proteínas de Transporte/química , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Formaldeído/farmacologia , Hemaglutininas/metabolismo , Ligantes , Proteínas de Membrana/química , Modelos Biológicos , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Conformação Proteica , Canais de Translocação SEC , Proteínas SecA
8.
Proc Natl Acad Sci U S A ; 97(16): 8889-91, 2000 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10908678

RESUMO

The homotypic fusion of yeast vacuoles occurs in an ordered cascade of priming, docking, and fusion. The linkage between these steps has so far remained unclear. We now report that Vam7p (the vacuolar SNAP-23/25 homolog) signals from the cis-SNARE complex to Ypt7p (the vacuolar Rab/Ypt) to initiate the docking process. After Vam7p has been released from the cis-SNARE complex by Sec18p-mediated priming, it is still required for Ypt7p-dependent docking and it needs Ypt7p to remain on the vacuole. Thus, after priming, Vam7p is released from the vacuole altogether if Ypt7p has been extracted by Gdi1p or inactivated by antibody but is not released if docking is blocked simply by vacuole dilution; it is therefore Ypt7p function, and not docking per se, that retains Vam7p. In accord with this finding, cells deleted for the gene encoding Ypt7 have normal amounts of Vam7p but have little Vam7p on their isolated vacuoles. Interaction of Vam7p and Ypt7p is further indicated by two-hybrid analysis [Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., et al. (2000) Nature (London) 403, 623-627] and by the effect of Vam7p on the association of the Rab/Ypt-effector HOPS complex (homotypic fusion and vacuole protein sorting; Vam2p and Vam6p plus four vacuole protein sorting class C proteins) with Ypt7p. Vam7p provides a functional link between the priming step, which releases it from the cis-SNARE complex, and docking.


Assuntos
Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas SNARE , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
9.
J Biol Chem ; 275(30): 22862-7, 2000 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-10816559

RESUMO

Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Cinética , Fusão de Membrana , Proteínas de Membrana/genética , Mutação , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
10.
Mol Biol Cell ; 11(3): 807-17, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712501

RESUMO

Yeast vacuoles undergo cycles of fragmentation and fusion as part of their transmission to the daughter cell and in response to changes of nutrients and the environment. Vacuole fusion can be reconstituted in a cell free system. We now show that the vacuoles synthesize phosphoinositides during in vitro fusion. Of these phosphoinositides, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are important for fusion. Monoclonal antibodies to PI(4,5)P(2), neomycin (a phosphoinositide ligand), and phosphatidylinositol-specific phospholipase C interfere with the reaction. Readdition of PI(4, 5)P(2) restores fusion in each case. Phosphatidylinositol 3-phosphate and PI(3,5)P(2) synthesis are not required. PI(4,5)P(2) is necessary for priming, i.e., for the Sec18p (NSF)-driven release of Sec17p (alpha-SNAP), which activates the vacuoles for subsequent tethering and docking. Therefore, it represents the kinetically earliest requirement identified for vacuole fusion so far. Furthermore, PI(4,5)P(2) is required at a step that can only occur after docking but before the BAPTA sensitive step in the latest stage of the reaction. We hence propose that PI(4,5)P(2) controls two steps of vacuole fusion.


Assuntos
Fosfatidilinositol 4,5-Difosfato/fisiologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Fusão de Membrana , Fosfatidilinositóis/fisiologia
11.
J Cell Biol ; 148(6): 1223-29, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-10725335

RESUMO

Vam2p/Vps41p is known to be required for transport vesicles with vacuolar cargo to bud from the Golgi. Like other VAM-encoded proteins, which are needed for homotypic vacuole fusion, we now report that Vam2p and its associated protein Vam6p/Vps39p are needed on each vacuole partner for homotypic fusion. In vitro vacuole fusion occurs in successive steps of priming, docking, and membrane fusion. While priming does not require Vam2p or Vam6p, the functions of these two proteins cannot be fulfilled until priming has occurred, and each is required for the docking reaction which culminates in trans-SNARE pairing. Consistent with their dual function in Golgi vesicle budding and homotypic fusion of vacuoles, approximately half of the Vam2p and Vam6p of the cell are recovered from cell lysates with purified vacuoles.


Assuntos
Proteínas de Transporte/fisiologia , Complexo de Golgi/fisiologia , Complexo de Golgi/ultraestrutura , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Nucleares , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae , Vacúolos/fisiologia , Proteínas de Transporte Vesicular , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Cinética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Vacúolos/ultraestrutura
12.
J Cell Biol ; 148(6): 1231-8, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-10725336

RESUMO

The homotypic fusion of yeast vacuoles requires Sec18p (NSF)-driven priming to allow vacuole docking, but the mechanism that links priming and docking is unknown. We find that a large multisubunit protein called the Vam2/6p complex is bound to cis-paired SNAP receptors (SNAREs) on isolated vacuoles. This association of the Vam2/6p complex with the cis-SNARE complex is disrupted during priming. The Vam2/6p complex then binds to Ypt7p, a guanosine triphosphate binding protein of the Rab family, to initiate productive contact between vacuoles. Thus, cis-SNARE complexes can contain Rab/Ypt effectors, and these effectors can be mobilized by NSF/Sec18p-driven priming, allowing their direct association with a Rab/Ypt protein to activate docking.


Assuntos
Adenosina Trifosfatases , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas de Membrana/isolamento & purificação , Modelos Biológicos , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/fisiologia , Proteínas SNARE , Saccharomyces cerevisiae/ultraestrutura , Vacúolos/ultraestrutura
13.
Proc Natl Acad Sci U S A ; 96(20): 11194-9, 1999 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-10500153

RESUMO

Vacuole fusion occurs in three stages: priming, in which Sec18p mediates Sec17p release, LMA1 (low M(r) activity 1) relocation, and cis-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex disassembly; docking, mediated by Ypt7p and trans-SNARE association; and fusion of docked vacuoles. Ca(2+) and calmodulin regulate late stages of the reaction. We now show that the vacuole proton gradient, generated by the vacuolar proton ATPase, is needed for trans-SNARE complex formation during docking and hence for the subsequent LMA1 release. Though neither the vacuolar Pmc1p Ca(2+)-ATPase nor the Vcx1p Ca(2+)/H(+) exchanger are needed for the fusion reaction, they participate in Ca(2+) and Delta mu(H)(+) homeostasis. Fusion itself does not require the maintenance of trans-SNARE pairs.


Assuntos
Fusão de Membrana , Proteínas de Membrana/química , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Cálcio/fisiologia , Dimerização , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Proteínas de Membrana/metabolismo , Proteínas SNARE
14.
J Cell Biol ; 145(7): 1435-42, 1999 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-10385523

RESUMO

Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the v-SNARE Nyv1p, are found in a multisubunit "cis" complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles the cis-SNARE complex, antibodies to any of the five SNARE proteins still inhibit the fusion assay until the docking stage is completed, suggesting that each SNARE plays a role in docking. Furthermore, vti1 temperature-sensitive alleles cause a synthetic fusion-defective phenotype in our reaction. Our data show that vacuole-vacuole fusion requires a cis-SNARE complex of five SNAREs, the t-SNAREs Vam3p and Vam7p and the v-SNAREs Nyv1p, Vti1p, and Ykt6p.


Assuntos
Proteínas de Transporte/metabolismo , Fusão de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Vacúolos/química , Proteínas de Transporte Vesicular , Alelos , Anticorpos/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/isolamento & purificação , Cromatografia de Afinidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Fusão de Membrana/efeitos dos fármacos , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/isolamento & purificação , Proteínas Sensíveis a N-Etilmaleimida , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fenótipo , Testes de Precipitina , Ligação Proteica , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas R-SNARE , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Proteína 25 Associada a Sinaptossoma , Temperatura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
15.
EMBO J ; 18(12): 3263-70, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10369667

RESUMO

prlA mutations in the gene encoding the SecY subunit of the membrane domain of the Escherichia coli preprotein translocase confer many phenotypes: enhanced translocation rates, increased affinity for SecA, diminished requirement for functional leader sequences, reduced proton-motive force (PMF) dependence of preprotein translocation and facilitated translocation of preproteins with folded domains. We now report that both prlA and prlG mutations weaken the associations between the SecY, SecE and SecG subunits of the translocase. This loosened association increases the initiation of translocation by facilitating the insertion of SecA with its bound preprotein but reduces the stimulatory effect of the PMF during the initial step of translocation. Furthermore, the originally isolated prlA4 mutant, which possesses a particularly labile SecYEG complex, acquired a secondary mutation that restored the stability while conserving the flexibility of the complex. Combinations of certain prlA and prlG mutations, known to cause synthetic lethality in vivo, dramatically loosen subunit association and lead to complete disassembly of SecYEG. These findings underscore the importance of the loosened SecYEG association for the Prl phenotypes. We propose a model in which each of the PrlA and PrlG phenotypes derive from this enhanced SecYEG conformational flexibility.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Adenosina Trifosfatases/química , Alelos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Supressores/genética , Modelos Biológicos , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Força Próton-Motriz/fisiologia , Canais de Translocação SEC , Proteínas SecA , Supressão Genética
16.
Nature ; 396(6711): 543-8, 1998 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-9859990

RESUMO

The homotypic fusion of yeast vacuoles includes a 'docking' step, which we show here to consist of two sequential reactions: a reversible 'tethering' mediated by the GTPase Ypt7, and 'SNARE pairing', in which SNARE proteins from opposite membranes form a complex in trans. The function of this trans-SNARE complex must be transient, as the complex can be disassembled by excess Sec18 in the presence of Sec17 and ATP without influencing the fusion rate. These data indicate that SNARE pairing may transiently signal to downstream factors, leading to fusion.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação ao GTP/fisiologia , Inibidores de Dissociação do Nucleotídeo Guanina , Fusão de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae , Vacúolos/fisiologia , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Proteínas de Transporte/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Membranas Intracelulares/fisiologia , Proteínas Qa-SNARE , Proteínas SNARE , Saccharomyces cerevisiae , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
17.
J Bacteriol ; 180(21): 5776-9, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9791133

RESUMO

SecA undergoes conformational changes during translocation, inserting domains into and across the membrane or enhancing the protease resistance of these domains. We now show that some SecA bound at SecYEG is accessible from the periplasm to a membrane-impermeant probe in cells with a permeabilized outer membrane but an intact plasma membrane.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras , Precursores de Proteínas/metabolismo , Transporte Biológico , Escherichia coli/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/farmacologia , Maleimidas/farmacologia , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Canais de Translocação SEC , Proteínas SecA , Tripsina/metabolismo
18.
J Biol Chem ; 273(34): 21675-81, 1998 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-9705302

RESUMO

SecA is found in the cytosol and bound to the plasma membrane of Escherichia coli. Binding occurs either with high affinity at SecYEG or with low affinity to lipid. Domains of 65 and 30 kDa of SecYEG-bound SecA insert into the membrane upon interaction with preprotein and ATP. Azide blocks preprotein translocation, in vivo and in vitro, through interacting with SecA and preventing SecA deinsertion. This provides a measure of the translocation relevance of each form of SecA membrane association. We now report that azide acts exclusively on SecA that is cycling at SecYEG and has no effect on SecA lipid associations. SecA molecules recovered with sucrose gradient-purified inner membrane vesicles ("endogenous" SecA) support translocation at the same rate as "added" SecA molecules bound at SecYEG. Both endogenous and added SecA yield the same proteolytic fragments, which are distinct from those obtained from SecA once it has inserted into membranes at SecYEG or from SecA at lipidic sites. Endogenous and added SecA differ, however, in their resistance to urea extraction. The translocation supported by either endogenous or added SecA is blocked by azide or by antibody to SecY. We conclude that SecA functions in preprotein translocation only through cycling at SecYEG.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Adenilil Imidodifosfato/metabolismo , Transporte Biológico , Catálise , Escherichia coli , Substâncias Macromoleculares , Canais de Translocação SEC , Proteínas SecA , Azida Sódica/metabolismo
19.
Science ; 281(5377): 700-2, 1998 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-9685264

RESUMO

Membrane trafficking has heretofore been studied with intact organelles. Here, fusion-competent proteoliposomes were reconstituted from a yeast vacuole detergent extract. Homotypic vacuole fusion requires many membrane proteins, including the Ypt7p guanosine triphosphatase and a "SNARE complex" with Vam3p and Nyv1p. Proteoliposomes from extracts immunodepleted of either Vam3p or Ypt7p could not fuse, but vesicles reconstituted from a mixture of these depleted extracts had restored fusion activity. Purified preassembled vacuolar SNARE complex, when reconstituted with a SNARE-depleted extract, was fully functional for fusion. Thus, solubilized integral membrane components can be reconstituted for priming, docking, and fusion steps of organelle trafficking.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/metabolismo , Proteolipídeos/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE , Saccharomyces cerevisiae/metabolismo , Solubilidade
20.
Cell ; 93(7): 1125-34, 1998 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-9657146

RESUMO

Vacuole fusion requires Sec18p (NSF), Sec17p (alpha-SNAP), Ypt7p (GTP binding protein), Vam3p (t-SNARE), Nyv1p (v-SNARE), and LMA1 (low Mr activity 1, a heterodimer of thioredoxin and I(B)2). LMA1 requires Sec18p for saturable, high-affinity binding to vacuoles, and Sec18p "priming" ATPase requires both Sec17p and LMA1. Either the sec18-1 mutation and deletion of I(B)2, or deletion of both I(B)2 and p13 (an I(B)2 homolog) causes a striking synthetic vacuole fragmentation phenotype. Upon Sec18p ATP hydrolysis, LMA1 transfers to (and stabilizes) a Vam3p complex. LMA1 is released from vacuoles in a phosphatase-regulated reaction. This LMA1 cycle explains how priming by Sec18p is coupled to t-SNARE stabilization and to fusion.


Assuntos
Adenosina Trifosfatases , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Tiorredoxinas/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/genética , Glicoproteínas/genética , Hidrólise , Toxinas Marinhas , Microcistinas , Dados de Sequência Molecular , Mutação , Peptídeos Cíclicos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas , Ligação Proteica , Proteínas Qa-SNARE , Saccharomyces cerevisiae/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...