Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999059

RESUMO

Designing cost-effective and highly efficient electrocatalysts for water splitting is a significant challenge. We have systematically investigated a series of quasi-2D oxides, LaSrMn0.5M0.5O4 (M = Co, Ni, Cu, Zn), to enhance the electrocatalytic properties of the two half-reactions of water-splitting, namely oxygen and hydrogen evolution reactions (OER and HER). The four materials are isostructural, as confirmed by Rietveld refinements with X-ray diffraction. The oxygen contents and metal valence states were determined by iodometric titrations and X-ray photoelectron spectroscopy. Electrical conductivity measurements in a wide range of temperatures revealed semiconducting behavior for all four materials. Electrocatalytic properties were studied for both half-reactions of water-splitting, namely, oxygen-evolution and hydrogen-evolution reactions (OER and HER). For the four materials, the trends in both OER and HER were the same, which also matched the trend in electrical conductivities. Among them, LaSrMn0.5Co0.5O4 showed the best bifunctional electrocatalytic activity for both OER and HER, which may be attributed to its higher electrical conductivity and favorable electron configuration.

2.
Inorg Chem ; 62(51): 20961-20969, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38010750

RESUMO

We have demonstrated a systematic trend in the electrocatalytic activity for the hydrogen evolution reaction (HER) and its correlations with transition-metal type, structural order, and electrical conductivity. The materials studied in this work, Ca3FeMn2O8 (CaFe1/3Mn2/3O3-1/3), Ca3Fe1.5Mn1.5O8, and Ca3Fe2MnO8, belong to the family of oxygen-deficient perovskites and show a gradual increase in the ordering of oxygen vacancies. Ca3FeMn2O8 (CaFe1/3Mn2/3O3-1/3) contains randomly distributed oxygen vacancies, which begin to order in Ca3Fe1.5Mn1.5O8, and are fully ordered in Ca3Fe2MnO8. The gradual increase in the structural order is associated with a systematic enhancement of the electrocatalytic activity for HER in acidic conditions, Ca3FeMn2O8 < Ca3Fe1.5Mn1.5O8 < Ca3Fe2MnO8. While the improvement of the HER activity is also associated with an increase in the Fe content, we have shown that the type of structural order plays a more important role. We demonstrated this effect by control experiments on an analogous material where all Mn was substituted by Fe, leading to a different type of structural order and showing an inferior HER activity compared to the above three materials. Furthermore, electrical conductivity studies in a wide range of temperatures, 25-800 °C, indicate that the trend in the electrical conductivity is the same as that of the HER activity. These findings reveal several important structure-property relationships and highlight the importance of synergistic effects in enhancing the electrocatalytic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...