Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0335123, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953356

RESUMO

Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE: Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.

2.
J Biol Chem ; 298(10): 102419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037968

RESUMO

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidade , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Candidíase Bucal/metabolismo , Candidíase Bucal/microbiologia , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia
3.
mBio ; 13(1): e0351021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073742

RESUMO

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Assuntos
Micotoxinas , Humanos , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Peptídeos/metabolismo , Citocinas/metabolismo
4.
Cells ; 9(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178483

RESUMO

Host released alarmins and antimicrobial peptides (AMPs) are highly effective as antifungal agents and inducers. Whilst some are expressed constitutively at mucosal tissues, the primary site of many infections, others are elicited in response to pathogens. In the context of Candida albicans, the fungal factors inducing the release of these innate immune molecules are poorly defined. Herein, we identify candidalysin as a potent trigger of several key alarmins and AMPs known to possess potent anti-Candida functions. We also find extracellular ATP to be an important activator of candidalysin-induced epithelial signalling responses, namely epidermal growth factor receptor (EGFR) and MAPK signalling, which mediate downstream innate immunity during oral epithelial infection. The data provide novel mechanistic insight into the induction of multiple key alarmins and AMPs, important for antifungal defences against C. albicans.


Assuntos
Alarminas/metabolismo , Candida albicans/imunologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Fúngicas/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...