Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Bio Med Chem Au ; 4(3): 154-164, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911908

RESUMO

Synthetic modification of oligodeoxynucleotides (ODNs) via conjugation to nucleic acid binding small molecules can improve hybridization and pharmacokinetic properties. In the present study, five Hoechst 33258 derived benzimidazoles were conjugated to T rich ODNs and their hybridization effectiveness was tested. Thermal denaturation studies revealed significant stabilization of complementary duplexes by ODN-benzimidazole conjugates, with the extent of stabilization being highly dependent on the length of the linker between DNA and benzimidazole. The increases in thermal stability were determined to be due to the binding of the benzimidazole moiety to the duplex. Circular dichroism and molecular modeling studies provided insights toward the influence of conjugation on duplex structure and how linker length impacts placement of the benzimidazole moiety in the minor groove. Furthermore, thermal denaturation studies with the complementary strand containing a single base mismatch or being RNA revealed that covalent conjugation of benzimidazoles to an ODN also enhances the sequence specificity. The fundamental studies reported herein provide a strategy to improve the stability and specificity properties of the ODN probes, which can be of use for targeting and diagnostics applications.

2.
ACS Infect Dis ; 10(3): 971-987, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38385613

RESUMO

Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of ß-galactosidase (ß-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of ß-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing ß-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.


Assuntos
Escherichia coli , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligonucleotídeos , Morfolinos , RNA/química , RNA/metabolismo , Expressão Gênica
3.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577658

RESUMO

Small molecules have become increasingly recognized as invaluable tools to study RNA structure and function and to develop RNA-targeted therapeutics. To rationally design RNA-targeting ligands, a comprehensive understanding and explicit testing of small molecule properties that govern molecular recognition is crucial. To date, most studies have primarily evaluated properties of small molecules that bind RNA in vitro, with little to no assessment of properties that are distinct to selective and bioactive RNA-targeted ligands. Therefore, we curated an RNA-focused library, termed the Duke RNA-Targeted Library (DRTL), that was biased towards the physicochemical and structural properties of biologically active and non-ribosomal RNA-targeted small molecules. The DRTL represents one of the largest academic RNA-focused small molecule libraries curated to date with more than 800 small molecules. These ligands were selected using computational approaches that measure similarity to known bioactive RNA ligands and that diversify the molecules within this space. We evaluated DRTL binding in vitro to a panel of four RNAs using two optimized fluorescent indicator displacement assays, and we successfully identified multiple small molecule hits, including several novel scaffolds for RNA. The DRTL has and will continue to provide insights into biologically relevant RNA chemical space, such as the identification of additional RNA-privileged scaffolds and validation of RNA-privileged molecular features. Future DRTL screening will focus on expanding both the targets and assays used, and we welcome collaboration from the scientific community. We envision that the DRTL will be a valuable resource for the discovery of RNA-targeted chemical probes and therapeutic leads.

4.
ACS Chem Biol ; 17(6): 1556-1566, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35594415

RESUMO

Discoveries of RNA roles in cellular physiology and pathology are increasing the need for new tools that modulate the structure and function of these biomolecules, and small molecules are proving useful. In 2017, we curated the RNA-targeted BIoactive ligaNd Database (R-BIND) and discovered distinguishing physicochemical properties of RNA-targeting ligands, leading us to propose the existence of an "RNA-privileged" chemical space. Biennial updates of the database and the establishment of a website platform (rbind.chem.duke.edu) have provided new insights and tools to design small molecules based on the analyzed physicochemical and spatial properties. In this report and R-BIND 2.0 update, we refined the curation approach and ligand classification system as well as conducted analyses of RNA structure elements for the first time to identify new targeting strategies. Specifically, we curated and analyzed RNA target structural motifs to determine the properties of small molecules that may confer selectivity for distinct RNA secondary and tertiary structures. Additionally, we collected sequences of target structures and incorporated an RNA structure search algorithm into the website that outputs small molecules targeting similar motifs without a priori secondary structure knowledge. Cheminformatic analyses revealed that, despite the 50% increase in small molecule library size, the distinguishing properties of R-BIND ligands remained significantly different from that of proteins and are therefore still relevant to RNA-targeted probe discovery. Combined, we expect these novel insights and website features to enable the rational design of RNA-targeted ligands and to serve as a resource and inspiration for a variety of scientists interested in RNA targeting.


Assuntos
RNA , Bibliotecas de Moléculas Pequenas , Bases de Dados de Ácidos Nucleicos , Ligantes , RNA/metabolismo , Sondas RNA , Bibliotecas de Moléculas Pequenas/química
5.
Contemp Clin Trials Commun ; 26: 100890, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128141

RESUMO

The common exclusion of pregnant women from clinical HIV research warrants inquiry into those few studies that do include pregnant women. This commentary highlights some of the pitfalls of the ClinicalTrials.gov platform for its intended users--study participants, particularly pregnant women--and investigators looking to use its data for study. Some of the pitfalls include missing information; lack of historical reporting enforcement; difficulty searching for studies focused on pregnant women versus the fetus; inability to consistently find studies targeted at specific stages of pregnancy; and lack of information relating to whether a study intervention is investigational or previously approved by the FDA.

6.
Ethics Hum Res ; 42(4): 2-16, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32672419

RESUMO

The near-routine exclusion of pregnant women from clinical research has resulted in evidence gaps that endanger the health of pregnant women and their future offspring. Although existing literature documents numerous obstacles along the clinical trial pathway that can stymie research involving pregnant women, there is little guidance on how to facilitate such research. This qualitative study aims to fill that void by examining the experiences of individuals involved in conducting, approving, or overseeing research involving pregnant women at one academic institution. The study identifies factors throughout the clinical pathway-from protocol development, to IRB review, and ultimately trial execution-that likely contribute to the successful conduct of research with pregnant women. Attention to those factors, coupled with agreement among stakeholders that research with pregnant women should and can be done ethically and legally, is critical to shifting the narrative from "why we cannot" do such research to "how we can."


Assuntos
Pesquisa Biomédica/ética , Comitês de Ética em Pesquisa/normas , Gestantes , Medicamentos sob Prescrição/administração & dosagem , Projetos de Pesquisa , Feminino , Humanos , Entrevistas como Assunto , Gravidez , Pesquisa Qualitativa , Projetos de Pesquisa/legislação & jurisprudência , Projetos de Pesquisa/normas , Medição de Risco
7.
Methods ; 167: 3-14, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31051253

RESUMO

Fluorescent indicator displacement (FID) assays are an advantageous approach to convert receptors into optical sensors that can detect binding of various ligands. In particular, the identification of ligands that bind to RNA receptors has become of increasing interest as the roles of RNA in cellular processes and disease pathogenesis continue to be discovered. Small molecules have been validated as tools to elucidate unknown RNA functions, underscoring the critical need to rapidly identify and quantitatively characterize RNA:small molecule interactions for the development of chemical probes. The successful application of FID assays to evaluate interactions between diverse RNA receptors and small molecules has been facilitated by the characterization of distinct fluorescent indicators that reversibly bind RNA and modulate the fluorescence signal. The utility of RNA-based FID assays to both academia and industry has been demonstrated through numerous uses in high-throughput screening efforts, structure-activity relationship studies, and in vitro target engagement studies. Furthermore, the development, optimization, and validation of a variety of RNA-based FID assays has led to general guidelines that can be utilized for facile implementation of the method with new or underexplored RNA receptors. Altogether, the use of RNA-based FID assays as a general analysis tool has provided valuable insights into small molecule affinity and selectivity, furthering the fundamental understanding of RNA:small molecule recognition. In this review, we will summarize efforts to employ FID assays using RNA receptors and describe the significant contributions of the method towards the development of chemical probes to reveal unknown RNA functions.


Assuntos
Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , RNA/química , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Ligantes , RNA/efeitos dos fármacos , RNA/genética , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
8.
Int J Pharm ; 564: 281-292, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30999048

RESUMO

HSP90 inhibitors have the potential to treat many types of cancer due to the dependence of tumor cells on HSP90 for cell growth and proliferation. The Cullin-5 (Cul5) E3 ubiquitin ligase is required for HSP90 inhibitors to induce client protein degradation and subsequent cell death. Cul5 is expressed at low levels in breast cancer cells compared to patient matched controls. This observed low Cul5 expression may play a role in the reported decreased efficacy of 17-AAG and related HSP90 inhibitors as a monotherapy. We have developed a method for delivery of 17-AAG plus Cul5 DNA to cells via gold nanoparticles (AuNPs). Delivery of AuNPs containing Cul5 DNA increases the sensitivity of Cul5 deficient AU565 cells to 17-AAG. Characterization of AuNPs by UV-vis spectrum, TEM, gel electrophoresis assay and 1H NMR indicate attachment of both 17-AAG and DNA payload as well as AuNP stability. Studies in Cul5 deficient AU565 cells reveal that delivery of Cul5 and 17-AAG together increase cytotoxicity. Our results provide evidence that delivery of DNA with drug may serve as a method to sensitize drug resistant tumor cells.


Assuntos
Benzoquinonas/farmacologia , Neoplasias da Mama/terapia , Proteínas Culina/genética , DNA/administração & dosagem , Ouro/administração & dosagem , Lactamas Macrocíclicas/farmacologia , Nanopartículas Metálicas/administração & dosagem , Linhagem Celular , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...