Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 12(1): 351, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307517

RESUMO

BACKGROUND: Anopheles maculatus (s.s.) is an important vector of malaria in Indonesia. Previously it was considered the only member of the Maculatus Group present in Indonesia. A novel species was recently identified in the Kulon Progo District in Central Java. Until recently, few investigations have been conducted looking at An. maculatus genetic diversity in Indonesia, including allopatric island populations. METHODS: Indonesian An. maculatus (s.l.) samples were collected in several locations in Java, Lesser Sunda Island group, Sumatra and in Kulon Progo (Yogyakarta, central Java) where a novel species has been identified. Samples from a 30-year-old colony of the Kulon Progo population were also included in the analysis. Maximum-likelihood analysis established the phylogenies of the ITS2 (nuclear) and cox1 (mitochondrial) markers. Putative times of separation were based on cox1 genetic distances. RESULTS: Two species of the Maculatus Group are present in Indonesia. The novel sibling species is more closely related to Anopheles dispar than to An. maculatus (s.s.). Anopheles maculatus (s.s.) samples are homogeneous based on the ITS2 sequences. Indonesian samples and An. dispar belong to the same cox1 maternal lineage and differ from all other known members of the Maculatus Group. Divergence time between the different populations found in Java was estimated using an established cox1 mutation rate. CONCLUSIONS: A novel species within the Maculatus Group, most closely related to An. dispar, is confirmed present in the Kulon Progo area of Central Java. The divergence of this species from An. maculatus (s.s.) is explained by the stable refugia in the Kulon Progo area during the quaternary period of intense volcanic activity throughout most of Java. This novel species awaits detailed morphological description before applying a formal species name. For the interim, it is proposed that the Kulon Progo population be designated An. maculatus var. menoreh to distinguish it from An. maculatus (s.s.).


Assuntos
Anopheles/classificação , Variação Genética , Filogenia , Animais , Ciclo-Oxigenase 1/genética , DNA Intergênico/genética , Indonésia , Ilhas , Malária/transmissão , Mosquitos Vetores/classificação , Mutação
2.
Malar J ; 18(1): 80, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876422

RESUMO

BACKGROUND: Comprehensive reports of malaria in Menoreh Hills, Central Java, Indonesia, a unique district cross-boundaries area under three districts and two provinces have been published previously. However, no study was performed to identify the hotspots of malaria in this cross-boundaries area, Kaligesing and Bagelen Subdistricts in Purworejo, Jawa Tengah Province and Kokap Subdistrict in Kulon Progo, Yogyakarta Province, using a longitudinal spatial data. METHODS: Monthly reports of malaria cases at primary health centres during 2005-2015 were collected and processed with ArcGIS and SaTScan to identify the malaria distribution at the village level. Malaria distribution was analysed using global spatial autocorrelation (Moran index) in ArcGIS. Cluster analysis was conducted using SaTScan purely spatial clustering and purely temporal clustering. Cluster characteristics resulted from three different approach were compared and analysed. RESULTS: During the last 11 years, 3812 malaria cases were reported and the number of high case incidence (HCI) villages were increased continuously. Malaria spatial distribution in Menoreh Hills was clustered spatially. Using three different approaches of time period ranges, consistent conclusion was found i.e. most likely clusters always occurred in the Purworejo district while the secondary clusters appeared later in the cross-boundaries districts. CONCLUSION: Spatiotemporal analysis of an 11 years surveillance data showed that hotspots of malaria cases in Menoreh Hills were continuously located in Purworejo district. The success of malaria elimination in the cross boundaries area of Menoreh Hills might be depended on the success in malaria case management and surveillance in this hotspot area.


Assuntos
Malária/epidemiologia , Topografia Médica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Indonésia/epidemiologia , Lactente , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise Espaço-Temporal , Adulto Jovem
3.
Ecohealth ; 14(1): 162-170, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27830388

RESUMO

Toxoplasmosis is a zoonosis caused by Toxoplasma gondii. Risk factors include consumption of undercooked meat, raw vegetables, and unfiltered water. This study aims to determine the seroprevalence and spatial distribution of toxoplasmosis in Middle Java, Indonesia, using an EcoHealth approach, combined with geographic information system (GIS). A total of 630 participants were randomly selected from seven districts. Each participant completed a questionnaire and provided a blood sample. The seroprevalence of toxoplasmosis was 62.5%. Of those who were seropositive, 90.1% were IgG+, and 9.9% were IgG+ and IgM+. Several risk factors were identified, including living at elevations of ≤200 m, compared with >200 m (OR = 56.2; P < 0.001), daily contact with raw meat (OR = 1.8; P = 0.001), unfiltered water (OR = 1.7; P = 0.003), and density of cats (OR = 1.4; P = 0.045). Visualizing the spatial distribution of seropositive respondents highlighted clustering in lowland areas. This study highlighted that Middle Java has a high prevalence of toxoplasmosis and identified some important environmental, ecological, and demographic risk factors. When researching diseases, such as toxoplasmosis, where animal hosts, human lifestyle, and environmental factors are involved in transmission, an EcoHealth method is essential to ensure a fully collaborative approach to developing interventions to reduce the risk of transmission in high-risk populations.


Assuntos
Toxoplasmose/epidemiologia , Animais , Anticorpos Antiprotozoários/sangue , Gatos , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Indonésia , Prevalência , Fatores de Risco , Estudos Soroepidemiológicos , Toxoplasma , Toxoplasmose/sangue
4.
Malar J ; 14: 318, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26275822

RESUMO

BACKGROUND: Malaria has been targeted for elimination from Indonesia by 2030, with varying timelines for specific geographical areas based on disease endemicity. The regional deadline for malaria elimination for Java island, given the steady decrease of malaria cases, was the end of 2015. Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage. This study documents factors that affect incidence and spatial distribution of malaria in Purworejo, such as geomorphology, topography, health system issues, and identifies potential constraints and challenges to achieve the elimination stage, such as inter-districts coordination, decentralization policy and allocation of financial resources for the programme. METHODS: Historical malaria data from 2007 to 2011 were collected through secondary data, in-depth interviews and focus group discussions during study year (2010-2011). Malaria cases were mapped using the village-centroid shape file to visualize its distribution with geomorphologic characteristics overlay and spatial distribution of malaria. API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern. RESULTS: The spatiotemporal pattern of malaria cases in Purworejo and the adjacent districts demonstrate repeated concentrated occurrences of malaria in specific areas from 2007 to 2011. District health system issues, i.e., suboptimal coordination between primary care and referral systems, suboptimal inter-district collaboration for malaria surveillance, decentralization policy and the lack of resources, especially district budget allocations for the malaria programme, were major constraints for programme sustainability. CONCLUSIONS: A new malaria elimination approach that fits the local disease transmission, intervention and political system is required. These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.


Assuntos
Malária/epidemiologia , Malária/prevenção & controle , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Incidência , Indonésia/epidemiologia , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Análise Espacial , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...