Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(19): 4744-4761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306264

RESUMO

The small heat shock protein Hsp42 and the t-SNARE protein Sed5 have central roles in the sequestration of misfolded proteins into insoluble protein deposits in the yeast Saccharomyces cerevisiae. However, whether these proteins/processes interact in protein quality control (PQC) is not known. Here, we show that Sed5 and anterograde trafficking modulate phosphorylation of Hsp42 partially via the MAPK kinase Hog1. Such phosphorylation, specifically at residue S215, abrogated the co-localization of Hsp42 with the Hsp104 disaggregase, aggregate clearance, chaperone activity, and sequestration of aggregates to IPOD and mitochondria. Furthermore, we found that Hsp42 is hyperphosphorylated in old cells leading to a drastic failure in disaggregation. Old cells also displayed a retarded anterograde trafficking, which, together with slow aggregate clearance and hyperphosphorylation of Hsp42, could be counteracted by Sed5 overproduction. We hypothesize that the breakdown of proper PQC during yeast aging may, in part, be due to a retarded anterograde trafficking leading to hyperphosphorylation of Hsp42.


Assuntos
Proteínas de Choque Térmico Pequenas , Proteínas de Saccharomyces cerevisiae , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fosforilação , Agregados Proteicos , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 298(11): 102476, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096201

RESUMO

The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.


Assuntos
Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Humanos , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , Proteínas de Choque Térmico/metabolismo , Guanilato Quinases/metabolismo
3.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378783

RESUMO

When the temperature is increased, the heat-shock response is activated to protect the cellular environment. The transcriptomics and proteomics of this process are intensively studied, while information about how the cell responds structurally to heat stress is mostly lacking. Here, Saccharomyces cerevisiae were subjected to a mild continuous heat shock (38°C) and intermittently cryo-immobilised for electron microscopy. Through measuring changes in all distinguishable organelle numbers, sizes and morphologies in over 2100 electron micrographs, a major restructuring of the internal architecture of the cell during the progressive heat shock was revealed. The cell grew larger but most organelles within it expanded even more, shrinking the volume of the cytoplasm. Organelles responded to heat shock at different times, both in terms of size and number, and adaptations of the morphology of some organelles (such as the vacuole) were observed. Multivesicular bodies grew by almost 70%, indicating a previously unknown involvement in the heat-shock response. A previously undescribed electron-translucent structure accumulated close to the plasma membrane. This all-encompassing approach provides a detailed chronological progression of organelle adaptation throughout the cellular heat-stress response.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoplasma , Resposta ao Choque Térmico , Temperatura Alta , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos
4.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932847

RESUMO

Clathrin ensures mitotic spindle stability and efficient chromosome alignment, independently of its vesicle trafficking function. Although clathrin localizes to the mitotic spindle and kinetochore fiber microtubule bundles, the mechanisms by which clathrin stabilizes microtubules are unclear. We show that clathrin adaptor interaction sites on clathrin heavy chain (CHC) are repurposed during mitosis to directly recruit the microtubule-stabilizing protein GTSE1 to the spindle. Structural analyses reveal that these sites interact directly with clathrin-box motifs on GTSE1. Disruption of this interaction releases GTSE1 from spindles, causing defects in chromosome alignment. Surprisingly, this disruption destabilizes astral microtubules, but not kinetochore-microtubule attachments, and chromosome alignment defects are due to a failure of chromosome congression independent of kinetochore-microtubule attachment stability. GTSE1 recruited to the spindle by clathrin stabilizes microtubules by inhibiting the microtubule depolymerase MCAK. This work uncovers a novel role of clathrin adaptor-type interactions to stabilize nonkinetochore fiber microtubules to support chromosome congression, defining for the first time a repurposing of this endocytic interaction mechanism during mitosis.


Assuntos
Proteínas de Ciclo Celular/genética , Cadeias Pesadas de Clatrina/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mitose/genética , Animais , Segregação de Cromossomos/genética , Clatrina/genética , Humanos , Cinetocoros/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fuso Acromático/genética
5.
Front Mol Neurosci ; 11: 249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083092

RESUMO

Protein quality control (PQC) is critical to maintain a functioning proteome. Misfolded or toxic proteins are either refolded or degraded by a system of temporal quality control and can also be sequestered into aggregates or inclusions by a system of spatial quality control. Breakdown of this concerted PQC network with age leads to an increased risk for the onset of disease, particularly neurological disease. Saccharomyces cerevisiae has been used extensively to elucidate PQC pathways and general evolutionary conservation of the PQC machinery has led to the development of several useful S. cerevisiae models of human neurological diseases. Key to both of these types of studies has been the development of several different model misfolding proteins, which are used to challenge and monitor the PQC machinery. In this review, we summarize and compare the model misfolding proteins that have been used to specifically study spatial PQC in S. cerevisiae, as well as the misfolding proteins that have been shown to be subject to spatial quality control in S. cerevisiae models of human neurological diseases.

6.
Sci Rep ; 8(1): 2727, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426884

RESUMO

Eukaryotic flagella are complex cellular extensions involved in many human diseases gathered under the term ciliopathies. Currently, detailed insights on flagellar structure come mostly from studies on protists. Here, cryo-electron tomography (cryo-ET) was performed on intact human spermatozoon tails and showed a variable number of microtubules in the singlet region (inside the end-piece). Inside the microtubule plus end, a novel left-handed interrupted helix which extends several micrometers was discovered. This structure was named Tail Axoneme Intra-Lumenal Spiral (TAILS) and binds directly to 11 protofilaments on the internal microtubule wall, in a coaxial fashion with the surrounding microtubule lattice. It leaves a gap over the microtubule seam, which was directly visualized in both singlet and doublet microtubules. We speculate that TAILS may stabilize microtubules, enable rapid swimming or play a role in controlling the swimming direction of spermatozoa.


Assuntos
Microscopia Crioeletrônica/métodos , Citoesqueleto/ultraestrutura , Flagelos/ultraestrutura , Microtúbulos/ultraestrutura , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/fisiologia , Humanos , Masculino , Espermatozoides/ultraestrutura
7.
Cell ; 169(6): 1066-1077.e10, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575670

RESUMO

Centrosomes are non-membrane-bound compartments that nucleate microtubule arrays. They consist of nanometer-scale centrioles surrounded by a micron-scale, dynamic assembly of protein called the pericentriolar material (PCM). To study how PCM forms a spherical compartment that nucleates microtubules, we reconstituted PCM-dependent microtubule nucleation in vitro using recombinant C. elegans proteins. We found that macromolecular crowding drives assembly of the key PCM scaffold protein SPD-5 into spherical condensates that morphologically and dynamically resemble in vivo PCM. These SPD-5 condensates recruited the microtubule polymerase ZYG-9 (XMAP215 homolog) and the microtubule-stabilizing protein TPXL-1 (TPX2 homolog). Together, these three proteins concentrated tubulin ∼4-fold over background, which was sufficient to reconstitute nucleation of microtubule asters in vitro. Our results suggest that in vivo PCM is a selective phase that organizes microtubule arrays through localized concentration of tubulin by microtubule effector proteins.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/química , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
8.
Cell Rep ; 16(3): 826-38, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373154

RESUMO

Age can be reset during mitosis in both yeast and stem cells to generate a young daughter cell from an aged and deteriorated one. This phenomenon requires asymmetry-generating genes (AGGs) that govern the asymmetrical inheritance of aggregated proteins. Using a genome-wide imaging screen to identify AGGs in Saccharomyces cerevisiae, we discovered a previously unknown role for endocytosis, vacuole fusion, and the myosin-dependent adaptor protein Vac17 in asymmetrical inheritance of misfolded proteins. Overproduction of Vac17 increases deposition of aggregates into cytoprotective vacuole-associated sites, counteracts age-related breakdown of endocytosis and vacuole integrity, and extends replicative lifespan. The link between damage asymmetry and vesicle trafficking can be explained by a direct interaction between aggregates and vesicles. We also show that the protein disaggregase Hsp104 interacts physically with endocytic vesicle-associated proteins, such as the dynamin-like protein, Vps1, which was also shown to be required for Vac17-dependent sequestration of protein aggregates. These data demonstrate that two physiognomies of aging-reduced endocytosis and protein aggregation-are interconnected and regulated by Vac17.


Assuntos
Agregados Proteicos/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Vacúolos/metabolismo , Vacúolos/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Dinaminas/metabolismo , Endocitose/fisiologia , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia
9.
Science ; 348(6236): 808-12, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25977552

RESUMO

The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Centrossomo/diagnóstico por imagem , Redes e Vias Metabólicas , Fosforilação , Polimerização , Ligação Proteica , Estrutura Terciária de Proteína , Ultrassonografia , Quinase 1 Polo-Like
10.
Nat Cell Biol ; 15(9): 1116-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23974040

RESUMO

Metaphase spindles are microtubule-based structures that use a multitude of proteins to modulate their morphology and function. Today, we understand many details of microtubule assembly, the role of microtubule-associated proteins, and the action of molecular motors. Ultimately, the challenge remains to understand how the collective behaviour of these nanometre-scale processes gives rise to a properly sized spindle on the micrometre scale. By systematically engineering the enzymatic activity of XMAP215, a processive microtubule polymerase, we show that Xenopus laevis spindle length increases linearly with microtubule growth velocity, whereas other parameters of spindle organization, such as microtubule density, lifetime and spindle shape, remain constant. We further show that mass balance can be used to link the global property of spindle size to individual microtubule dynamic parameters. We propose that spindle length is set by a balance of non-uniform nucleation and global microtubule disassembly in a liquid-crystal-like arrangement of microtubules.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde , Metáfase/genética , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/ultraestrutura , Oócitos/ultraestrutura , Fuso Acromático/genética , Fuso Acromático/ultraestrutura , Suínos , Transfecção , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
11.
Nat Cell Biol ; 15(6): 688-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23666085

RESUMO

In cells, a complex network of proteins regulates the dynamic growth of microtubules that is essential for division and migration. In vitro approaches with purified components have so far been unable to reconstitute fast microtubule growth observed in vivo . Here we show that two well-studied plus-end-binding proteins-end-tracking protein EB1 and microtubule polymerase XMAP215-act together to strongly promote microtubule growth to cellular rates. Unexpectedly, the combined effects of XMAP215 and EB1 are highly synergistic, with acceleration of growth well beyond the product of the individual effects of either protein. The synergistic growth promotion does not rely on any of the canonical EB1 interactions, suggesting an allosteric interaction through the microtubule end. This hypothesis is supported by the finding that taxol and XMAP215, which have non-overlapping binding sites on tubulin, also act synergistically on growth. The increase in growth rates is accompanied by a strong enhancement of microtubule catastrophe by EB1, thereby rendering the fast and dynamic microtubule behaviour typically observed in cells.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Insetos , Proteínas Associadas aos Microtúbulos/química , Paclitaxel/metabolismo , Ligação Proteica , Suínos , Tubulina (Proteína)/química
12.
PLoS One ; 7(12): e51259, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236459

RESUMO

The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.


Assuntos
Neoplasias da Mama/genética , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Primers do DNA/genética , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Imunoprecipitação , Estimativa de Kaplan-Meier , Espectrometria de Massas , Microscopia de Fluorescência , Microtúbulos/metabolismo , Invasividade Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
13.
Mol Biol Cell ; 23(22): 4393-401, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22993214

RESUMO

We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.


Assuntos
Cromatografia de Afinidade/métodos , Spodoptera/metabolismo , Tubulina (Proteína)/isolamento & purificação , Animais , Caenorhabditis elegans , Chlamydomonas reinhardtii , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/química , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Xenopus laevis
14.
Proc Natl Acad Sci U S A ; 108(7): 2741-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282620

RESUMO

XMAP215/Dis1 family proteins positively regulate microtubule growth. Repeats at their N termini, called TOG domains, are important for this function. While TOG domains directly bind tubulin dimers, it is unclear how this interaction translates to polymerase activity. Understanding the functional roles of TOG domains is further complicated by the fact that the number of these domains present in the proteins of different species varies. Here, we take advantage of a recent crystal structure of the third TOG domain from Caenorhabditis elegans, Zyg9, and mutate key residues in each TOG domain of XMAP215 that are predicted to be important for interaction with the tubulin heterodimer. We determined the contributions of the individual TOG domains to microtubule growth. We show that the TOG domains are absolutely required to bind free tubulin and that the domains differentially contribute to XMAP215's overall affinity for free tubulin. The mutants' overall affinity for free tubulin correlates well with polymerase activity. Furthermore, we demonstrate that an additional basic region is important for targeting to the microtubule lattice and is critical for XMAP215 to function at physiological concentrations. Using this information, we have engineered a "bonsai" protein, with two TOG domains and a basic region, that has almost full polymerase activity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Cromatografia em Gel , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutagênese , Polímeros/metabolismo , Estrutura Terciária de Proteína/genética
15.
Methods Cell Biol ; 95: 221-45, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20466138

RESUMO

In vitro assays that reconstitute the dynamic behavior of microtubules provide insight into the roles of microtubule-associated proteins (MAPs) in regulating the growth, shrinkage, and catastrophe of microtubules. The use of total internal reflection fluorescence microscopy with fluorescently labeled tubulin and MAPs has allowed us to study microtubule dynamics at the resolution of single molecules. In this chapter we present a practical overview of how these assays are performed in our laboratory: fluorescent labeling methods, strategies to prolong the time to photo-bleaching, preparation of stabilized microtubules, flow-cells, microtubule immobilization, and finally an overview of the workflow that we follow when performing the experiments. At all stages, we focus on practical tips and highlight potential stumbling blocks.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microtúbulos/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Cor , Corantes Fluorescentes/farmacologia , Humanos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Modelos Biológicos , Coloração e Rotulagem/métodos , Tubulina (Proteína)/metabolismo
16.
Mol Biol Cell ; 20(3): 915-23, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19056681

RESUMO

The Saccharomyces cerevisiae chromosomal passenger proteins Ipl1 (Aurora B) and Sli15 (INCENP) are required for the tension checkpoint, but the role of the third passenger, Bir1, is controversial. We have isolated a temperature-sensitive mutant (bir1-107) in the essential C-terminal region of Bir1 known to be required for binding to Sli15. This allele reveals a checkpoint function for Bir1. The mutant displays a biorientation defect, a defective checkpoint response to lack of tension, and an inability to detach mutant kinetochores. Ipl1 localizes to aberrant foci when Bir1 localization is disrupted in the bir1-107 mutant. Thus, one checkpoint role of Bir1 is to properly localize Ipl1 and allow detachment of kinetochores. Quantitative analysis indicates that the chromosomal passengers colocalize with kinetochores in G1 but localize between kinetochores that are under tension. Bir1 localization to kinetochores is maintained in an mcd1-1 mutant in the absence of tension. Our results suggest that the establishment of tension removes Ipl1, Bir1, and Sli15, and their kinetochore detachment activity, from the vicinity of kinetochores and allows cells to proceed through the tension checkpoint.


Assuntos
Ciclo Celular , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Alelos , Aurora Quinases , Polaridade Celular , Cromossomos Fúngicos/metabolismo , Proteínas Fúngicas/química , Peptídeos e Proteínas de Sinalização Intracelular , Cinetocoros/metabolismo , Metáfase , Mutação/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura
17.
Nat Cell Biol ; 10(4): 407-14, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18364702

RESUMO

During mitosis, kinetochores form persistent attachments to microtubule tips and undergo corrective detachment in response to phosphorylation by Ipl1 (Aurora B) kinase. The Dam1 complex is required to establish and maintain bi-oriented attachment to microtubule tips in vivo, and it contains multiple sites phosphorylated by Ipl1 (Refs 2, 3, 4, 5, 6, 7, 8, 9, 10). Moreover, a number of kinetochore-like functions can be reconstituted in vitro with pure Dam1 complex. These functions are believed to derive from the ability of the complex to self-assemble into rings. Here we show that rings are not necessary for dynamic microtubule attachment, Ipl1-dependent modulation of microtubule affinity or the ability of Dam1 to move processively with disassembling microtubule tips. Using two fluorescence-based assays, we found that the complex exhibited a high affinity for microtubules (Kd of approximately 6 nM) that was reduced by phosphorylation at Ser 20, a single Ipl1 target residue in Dam1. Moreover, individual complexes underwent one-dimensional diffusion along microtubules and detached 2.5-fold more frequently after phosphorylation by Ipl1. Particles consisting of one to four Dam1 complexes - too few to surround a microtubule - were captured and carried by disassembling tips. Thus, even a small number of binding elements could provide a dynamic, phosphoregulated microtubule attachment and thereby facilitate accurate chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citoesqueleto , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mitose/fisiologia , Fosforilação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Biol Cell ; 17(3): 1065-74, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16381814

RESUMO

The Saccharomyces cerevisiae inhibitor of apoptosis (IAP) repeat protein Bir1 localizes as a chromosomal passenger. A deletion analysis of Bir1 identified two regions important for function. The C-terminal region is essential for growth, binds Sli15, and is necessary and sufficient for the localization of Bir1 as a chromosomal passenger. The middle region is not essential but is required to localize the inner kinetochore protein Ndc10 to the spindle during anaphase and to the midzone at telophase. In contrast, precise deletion of the highly conserved IAP repeats conferred no phenotype and did not alter the cell cycle delay caused by loss of cohesin. Bir1 is phosphorylated in a cell cycle-dependent manner. Mutation of all nine CDK consensus sites in the middle region of Bir1 significantly decreased the level of phosphorylation and blocked localization of Ndc10 to the spindle at anaphase. Moreover, immunoprecipitation of Ndc10 with Bir1 was dependent on phosphorylation. The loss of Ndc10 from the anaphase spindle prevented elongation of the spindle beyond 7 microm. We conclude that phosphorylation of the middle region of Bir1 is required to bring Ndc10 to the spindle at anaphase, which is required for full spindle elongation.


Assuntos
Anáfase , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Deleção Cromossômica , Proteínas Fúngicas/química , Deleção de Genes , Proteínas Inibidoras de Apoptose/metabolismo , Cinetocoros , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/citologia
19.
Yeast ; 22(10): 769-74, 2005 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-16088871

RESUMO

Temperature-sensitive (TS), internally deleted and truncated alleles are important tools to facilitate the characterization of essential genes. We have developed a straightforward method to replace a wild-type gene with a mutant allele at the endogenous locus. This method is an efficient alternative to the two-step method for integration of alleles that are compromised in function or contain multiple mutations. A strain is constructed that has the essential gene of interest disrupted by a selectable marker. Strain viability is maintained by a plasmid carrying a copy of the essential wild-type gene and the ADE3 gene. The mutant allele is cloned into an integratable vector carrying a selectable/counter-selectable marker, such as URA3. The plasmid is linearized and transformed, directing integration to the 5' or 3' region flanking the essential open reading frame (ORF). Transformants that have integrated the mutant gene at the endogenous locus can lose the autonomous plasmid carrying the wild-type copy of the essential gene and the ADE3 gene. These transformants are identifiable as white sectoring colonies, display the mutant phenotype and may be characterized. An optional second selection step on 5-fluoroorotic acid (5-FOA) selects for popouts of the integrating vector sequences, leaves the mutant allele at the endogenous locus, and recycles selectable markers. We have used this method to integrate a TS allele of SPC110 that could not be integrated by standard methods.


Assuntos
Alelos , Marcação de Genes/métodos , Genes Fúngicos , Leveduras/genética , Proteínas Fúngicas , Genes Essenciais , Hidroximetil e Formil Transferases/genética , Mutagênese Sítio-Dirigida , Mutação , Ácido Orótico/análogos & derivados , Fosforribosilglicinamido Formiltransferase , Plasmídeos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...