Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 283(32): 21881-9, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18519568

RESUMO

Potent cell activation by endotoxin requires sequential protein-endotoxin and protein-protein interactions involving lipopolysaccharide-binding protein, CD14, MD-2, and Toll-like receptor 4 (TLR4). MD-2 plays an essential role by bridging endotoxin (E) recognition initiated by lipopolysaccharide-binding protein and CD14 to TLR4 activation by presenting endotoxin as a monomeric E.MD-2 complex that directly and potently activates TLR4. Secreted MD-2 (sMD-2) exists as a mixture of monomers and multimers. Published data suggest that only MD-2 monomer can interact with endotoxin and TLR4 and support cell activation, but the apparent instability of MD-2 has thwarted efforts to more fully separate and characterize the individual species of sMD-2. We have taken advantage of the much greater stability of sMD-2 in insect culture medium to fully separate sMD-2 monomer from dimer by gel sieving chromatography. At low nanomolar concentrations, the sMD-2 monomer, but not dimer, reacted with a monomeric complex of E.sCD14 to form monomeric E.MD-2 and activate HEK293/TLR4 cells. The monomer, but not dimer, also reacted with the ectodomain of TLR4 with an affinity comparable with the picomolar affinity of E.MD-2. These findings demonstrate directly that the monomeric form of sMD-2 is the active species both for reaction with E.CD14 and TLR4, as needed for potent endotoxin-induced TLR4 activation.


Assuntos
Endotoxinas/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Receptor 4 Toll-Like/metabolismo , Resinas Acrílicas , Animais , Linhagem Celular , Meios de Cultura , Meios de Cultivo Condicionados , Dimerização , Humanos , Insetos/citologia , Antígeno 96 de Linfócito/isolamento & purificação , Neisseria meningitidis , Estrutura Quaternária de Proteína , Proteínas Recombinantes/metabolismo , Solubilidade
2.
Semin Reprod Med ; 22(4): 289-98, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15635497

RESUMO

It remains unknown whether dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) have a physiological role other than serving as metabolic intermediates in androgen synthesis. Apart from intracellular metabolism, there is no convincing cellular mechanism of action for physiological concentrations of DHEA(S). Unlike other major steroids, a receptor for DHEA(S) has not been definitively isolated. This article will review the evidence supporting a receptor-dependent basis for the direct physiological effects of DHEA(S). The data supporting an intracellular receptor for DHEA(S) are relatively weak and do not allow us to determine whether DHEA(S) directly, or a metabolite of DHEA(S), acts as a direct receptor ligand. Recent data strongly support a plasma membrane receptor for DHEA, but this potential receptor is yet to be isolated. Definitive characterization of the molecular mechanism (receptor or otherwise) of DHEA(S) action is necessary before we can determine whether DHEA(S) has a biological role other than as an androgen precursor.


Assuntos
Sulfato de Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Esteroides/metabolismo , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Humanos
3.
Biochemistry ; 42(40): 11762-7, 2003 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-14529287

RESUMO

Epoxyeicosatrienoic acids (EETs) are potent regulators of vascular homeostasis and are bound by cytosolic fatty acid-binding proteins (FABPs) with K(d) values of approximately 0.4 microM. To determine whether FABP binding modulates EET metabolism, we examined the effect of FABPs on the soluble epoxide hydrolase (sEH)-mediated conversion of EETs to dihydroxyeicosatrienoic acids (DHETs). Kinetic analysis of sEH conversion of racemic [(3)H]11,12-EET yielded K(m) = 0.45 +/- 0.08 microM and V(max) = 9.2 +/- 1.4 micromol min(-1) mg(-)(1). Rat heart FABP (H-FABP) and rat liver FABP were potent inhibitors of 11,12-EET and 14,15-EET conversion to DHET. The resultant inhibition curves were best described by a substrate depletion model, with K(d) = 0.17 +/- 0.01 microM for H-FABP binding to 11,12-EET, suggesting that FABP acts by reducing EET availability to sEH. The EET depletion by FABP was antagonized by the co-addition of arachidonic acid, oleic acid, linoleic acid, or 20-hydroxyeicosatetraenoic acid, presumably due to competitive displacement of FABP-bound EET. Collectively, these findings imply that FABP might potentiate the actions of EETs by limiting their conversion to DHET. However, the effectiveness of this process may depend on metabolic conditions that regulate the levels of competing FABP ligands.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/química , Proteínas de Transporte/química , Epóxido Hidrolases/química , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Água/química , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/química , Animais , Ligação Competitiva , Proteínas de Transporte/antagonistas & inibidores , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/química , Cinética , Ligantes , Ácido Linoleico/química , Modelos Químicos , Miocárdio/química , Miocárdio/enzimologia , Ácido Oleico/química , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...