Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Steroid Biochem Mol Biol ; 155(Pt A): 166-76, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519986

RESUMO

Previous studies have shown that breast tissues and breast cell lines can convert progesterone to 5α-pregnane-3,20-dione (5aP), and that 5αP stimulates breast cell proliferation and detachment in vitro, and tumor formation in vivo, regardless of presence or absence of receptors for progesterone (PR) or estrogen (ER). Recently it was demonstrated, both in vitro and in vivo, that pro-cancer actions attributed to administered progesterone are due to the in situ produced 5αP. Because of the significant role of 5αP in breast cancers, it is important to understand its molecular mechanisms of action. The aims of the current studies were to identify 5αP binding sites and to determine if the mechanisms of action of 5αP involve the mitogen-activated protein kinase (MAPK), extracellular signal-regulated protein kinases (ERK1/2) pathway. Binding studies, using tritium-labeled 5αP ([(3)H]5αP), carried out on membrane, cytosol and nuclear fractions from human breast cells (MCF-7, PR/ER-positive; MDA-MB-231, PR/ER-negative) and on highly enriched membrane fractions, identified the plasma membrane as the site of ligand specific 5αP receptors. Localization of 5αP receptors to the cell membrane was confirmed visually with fluorescently labeled conjugate (5αP-BSA-FITC). Treatment of cells with either 5αP or membrane-impermeable 5αP-BSA resulted in significant increases in cell proliferation and detachment. 5αP and 5αP-BSA equally activated the MAPK/ERK1/2 pathway as evidenced by phosphorylation of ERK1/2. Inhibitors (PD98059, mevastatin and genistein) of specific sites along the Ras/Raf/MEK/ERK signaling pathway, blocked the phosphorylation and concomitantly inhibited 5αP-induced stimulation of cell proliferation and detachment. The study has identified high affinity, stereo-specific binding sites for 5αP that have the characteristics of a functional membrane 5αP receptor, and has shown that the cancer-promoter actions of 5αP are mediated from the liganded receptor via the MAPK/ERK1/2 signaling cascade. The findings enhance our understanding of the role of the progesterone metabolite 5αP in breast cancer and should promote new approaches to the development of breast cancer diagnostics and therapeutics.


Assuntos
5-alfa-Di-Hidroprogesterona/metabolismo , Neoplasias da Mama/metabolismo , Membrana Celular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores de Esteroides/metabolismo
2.
J Steroid Biochem Mol Biol ; 149: 27-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25595041

RESUMO

Progesterone has long been linked to breast cancer but its actual role as a cancer promoter has remained in dispute. Previous in vitro studies have shown that progesterone is converted to 5α-dihydroprogesterone (5αP) in breast tissue and human breast cell lines by the action of 5α-reductase, and that 5αP acts as a cancer-promoter hormone. Also studies with human breast cell lines in which the conversion of progesterone to 5αP is blocked by a 5α-reductase inhibitor, have shown that the in vitro stimulation in cell proliferation with progesterone treatments are not due to progesterone itself but to the metabolite 5αP. No similar in vivo study has been previously reported. The objective of the current studies was to determine in an in vivo mouse model if the presumptive progesterone-induced mammary tumorigenesis is due to the progesterone metabolite, 5αP. BALB/c mice were challenged with C4HD murine mammary cells, which have been shown to form tumors when treated with progesterone or the progestin, medroxyprogesterone acetate. Cells and mice were treated with various doses and combinations of progesterone, 5αP and/or the 5α-reductase inhibitor, finasteride, and the effects on cell proliferation and induction and growth of tumors were monitored. Hormone levels in serum and tumors were measured by specific RIA and ELISA tests. Proliferation of C4HD cells and induction and growth of tumors was stimulated by treatment with either progesterone or 5αP. The progesterone-induced stimulation was blocked by finasteride and reinstated by concomitant treatment with 5αP. The 5αP-induced tumors expressed high levels of ER, PR and ErbB-2. Hormone measurements showed significantly higher levels of 5αP in serum from mice with tumors than from mice without tumors, regardless of treatments, and 5αP levels were significantly higher (about 4-fold) in tumors than in respective sera, while progesterone levels did not differ between the compartments. The results indicate that the stimulation of C4HD tumor growth in BALB/c mice treated with progesterone is due to the progesterone metabolite 5αP formed at elevated levels in mammary cells as a result of the 5α-reductase action on progesterone. The results provide the first in vivo demonstration that stimulation of breast cell tumorigenesis and tumor growth accompanying progesterone treatment is due to the progesterone metabolite 5αP, and that breast tumorigenesis can be blocked with the 5α-reductase inhibitor, finasteride.


Assuntos
Inibidores de 5-alfa Redutase/uso terapêutico , 5-alfa-Di-Hidroprogesterona/metabolismo , Neoplasias da Mama/prevenção & controle , Mama/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Finasterida/uso terapêutico , Animais , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colestenona 5 alfa-Redutase/análise , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Progesterona/metabolismo
3.
Breast Cancer Res ; 15(3): R38, 2013 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25927181

RESUMO

INTRODUCTION: Of the nearly 1.4 million new cases of breast cancer diagnosed each year, a large proportion is characterized as hormone receptor negative, lacking estrogen receptors (ER) and/or progesterone receptors (PR). Patients with receptor-negative tumors do not respond to current steroid hormone-based therapies and generally have significantly higher risk of recurrence and mortality compared with patients with tumors that are ER- and/or PR-positive. Previous in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines. Here in vivo studies were conducted to investigate the ability of 5αP and 3αHP to control initiation, growth, and regression of ER/PR-negative human breast cell tumors. METHODS: ER/PR-negative human breast cells (MDA-MB-231) were implanted into mammary fat pads of immunosuppressed mice, and the effects of 5αP and 3αHP treatments on tumor initiation, growth, suppression/regression, and histopathology were assessed in five separate experiments. Specific radioimmunoassays and gas chromatography-mass spectrometry were used to measure 5αP, 3αHP, and progesterone in mouse serum and tumors. RESULTS: Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP. When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa. Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors. The levels of 5αP in tumors, regardless of treatment, were about 10-fold higher than the levels of 3αHP, and the 5αP:3αHP ratios were about fivefold higher than in serum, indicating significant changes in endogenous synthesis of these hormones in tumorous breast tissues. CONCLUSIONS: The studies showed that estrogen/progesterone-insensitive breast tumors are sensitive to, and controlled by, the progesterone metabolites 5αP and 3αHP. Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions. The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress. The results provide the first hormonal theory to explain tumorigenesis of ER/PR-negative breast tissues and support the hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions. The findings suggest new diagnostics based on the relative levels of these hormones and new approaches to prevention and treatment of breast cancers based on regulating the levels and action mechanisms of anti- and pro-cancer progesterone metabolites.


Assuntos
20-alfa-Di-Hidroprogesterona/análogos & derivados , 5-alfa-Di-Hidroprogesterona/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , 20-alfa-Di-Hidroprogesterona/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Distribuição Tecidual , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Pharmacol Exp Ther ; 338(2): 598-604, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21558439

RESUMO

Steroidogenic acute regulatory protein facilitates the translocation of cholesterol to the inner mitochondrial membrane, thereby initiating steroidogenesis. At the inner mitochondrial membrane, cytochrome P450 side-chain cleavage enzyme converts cholesterol to pregnenolone, an oxidative process requiring electrons from NADPH. Pregnenolone then serves as the substrate for the formation of progesterone or dehydroepiandrosterone by downstream enzymes. Studies have shown that cigarette smoke (CS) influences steroid hormone levels. To better understand the underlying mechanisms, we used a mouse model to study the effects of chronic CS exposure on steroidogenesis. Through radioimmunoassay and metabolic conversion assays, we found that CS reduced progesterone and dehydroepiandrosterone without affecting cytochrome P450 side-chain cleavage enzyme or 3ß-hydroxysteroid dehydrogenase 2 expression. However, CS did reduce expression of cytochrome c oxidase IV (COX IV), a component of the mitochondrial complex that serves as the last enzyme in the electron transport chain. Small interfering RNA-mediated COX IV knockdown indeed decreased progesterone synthesis in steroidogenic cells. In summary, COX IV likely plays a role in steroidogenesis, and passive smoking may negatively affect steroidogenesis by disrupting the electron transport chain.


Assuntos
Desidroepiandrosterona/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica , Pregnenolona/biossíntese , Progesterona/antagonistas & inibidores , Fumar/metabolismo , Animais , Células COS , Chlorocebus aethiops , Desidroepiandrosterona/antagonistas & inibidores , Regulação para Baixo/genética , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Feminino , Técnicas de Silenciamento de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Pregnenolona/antagonistas & inibidores , Progesterona/biossíntese , Distribuição Aleatória , Fumar/efeitos adversos , Esteroides
5.
J Steroid Biochem Mol Biol ; 118(1-2): 125-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19931389

RESUMO

Previous studies have shown that breast tissues and breast cell lines convert progesterone (P) to 5alpha-dihydroprogesterone (5alphaP) and 3alpha-dihydroprogesterone (3alphaHP) and that 3alphaHP suppresses, whereas 5alphaP promotes, cell proliferation and detachment. The objectives of the current studies were to determine if the 5alphaP- and 3alphaHP-induced changes in cell numbers are due to altered rates of mitosis and/or apoptosis, and if 3alphaHP and 5alphaP act on tumorigenic and non-tumorigenic cells, regardless of estrogen (E) and P receptor status. The studies were conducted on tumorigenic (MCF-7, MDA-MB-231, T47D) and non-tumorigenic (MCF-10A) human breast cell lines, employing several methods to assess the effects of the hormones on cell proliferation, mitosis, apoptosis and expression of Bcl-2, Bax and p21. In all four cell lines, 5alphaP increased, whereas 3alphaHP decreased cell numbers, [(3)H]thymidine uptake and mitotic index. Apoptosis was stimulated by 3alphaHP and suppressed by 5alphaP. 5alphaP resulted in increases in Bcl-2/Bax ratio, indicating decreased apoptosis; 3alphaHP resulted in decreases in Bcl-2/Bax ratio, indicating increased apoptosis. The effects of either 3alphaHP or 5alphaP on cell numbers, [(3)H]thymidine uptake, mitosis, apoptosis, and Bcl-2/Bax ratio, were abrogated when cells were treated simultaneously with both hormones. The expression of p21 was increased by 3alphaHP, and was unaffected by 5alphaP. The results provide the first evidence that 5alphaP stimulates mitosis and suppresses apoptosis, whereas 3alphaHP inhibits mitosis and stimulates apoptosis. The opposing effects of 5alphaP and 3alphaHP were observed in all four breast cell lines examined and the data suggest that all breast cancers (estrogen-responsive and unresponsive) might be suppressed by blocking 5alphaP formation and/or increasing 3alphaHP. The findings further support the hypothesis that progesterone metabolites are key regulatory hormones and that changes in their relative concentrations in the breast microenvironment determine whether breast tissues remain normal or become cancerous.


Assuntos
20-alfa-Di-Hidroprogesterona/análogos & derivados , 5-alfa-Di-Hidroprogesterona/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitose/efeitos dos fármacos , 20-alfa-Di-Hidroprogesterona/metabolismo , 20-alfa-Di-Hidroprogesterona/farmacologia , 5-alfa-Di-Hidroprogesterona/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Glândulas Mamárias Humanas , Progesterona/análogos & derivados , Progesterona/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
6.
Endocr Relat Cancer ; 13(3): 717-38, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16954427

RESUMO

In the 70 years since progesterone (P) was identified in corpus luteum extracts, its metabolism has been examined extensively in many tissues and cell lines from numerous species. In addition to the reproductive tissues and adrenals, every other tissue that has been investigated appears to have one or more P-metabolizing enzyme, each of which is specific for a particular site on the P molecule. In the past, the actions of the P metabolizing enzymes generally have been equated to a means of reducing the P concentration in the tissue microenvironment, and the products have been dismissed as inactive waste metabolites. In human breast tissues and cell lines, the following P-metabolizing enzymes have been identified: 5alpha-reductase, 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO), 3beta-HSO, 20alpha-HSO, and 6alpha-hydroxylase. Rather than providing diverse pathways for inactivating and controlling the concentration of P in breast tissue microenvironments, it is proposed that the enzymes act directly on P to produce two types of autocrines/paracrines with opposing regulatory roles in breast cancer. Evidence is reviewed which shows that P is directly converted to the 4-pregnenes, 3alpha-hydroxy-4-pregnen-20-one (3alpha-dihydroprogesterone; 3alphaHP) and 20alpha-dihydroprogesterone (20alphaHP), by the actions of 3alpha-HSO and 20alpha-HSO respectively and to the 5alpha-pregnane, 5alpha-pregnane-3,20-dione(5alpha-dihydroprogesterone; 5alphaP), by the irreversible action of 5alpha-reductase. In vitro studies on a number of breast cell lines indicate that 3alphaHP promotes normalcy by downregulating cell proliferation and detachment, whereas 5alphaP promotes mitogenesis and metastasis by stimulating cell proliferation and detachment. The hormones bind to novel, separate, and specific plasma membrane-based receptors and influence opposing actions on mitosis, apoptosis, and cytoskeletal and adhesion plaque molecules via cell signaling pathways. In normal tissue, the ratio of 4-pregnenes:5alpha-pregnanes is high because of high P 3alpha- and 20alpha-HSO activities/expression and low P 5alpha-reductase activity/expression. In breast tumor tissue and tumorigenic cell lines, the ratio is reversed in favor of the 5alpha-pregnanes because of altered P-metabolizing enzyme activities/expression. The evidence suggests that the promotion of breast cancer is related to changes in in situ concentrations of cancer-inhibiting and -promoting P metabolites. Current estrogen-based theories and therapies apply to only a fraction of all breast cancers; the majority (about two-thirds) of breast cancer cases are estrogen-insensitive and have lacked endocrine explanations. As the P metabolites, 5alphaP and 3alphaHP, have been shown to act with equal efficacy on all breast cell lines tested, regardless of their tumorigenicity, estrogen sensitivity, and estrogen receptor/progesterone receptor status, it is proposed that they offer a new hormonal basis for all forms of breast cancer. New diagnostic and therapeutic possibilities for breast cancer progression, control, regression, and prevention are suggested.


Assuntos
Neoplasias da Mama/metabolismo , Progesterona/metabolismo , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Divisão Celular , Linhagem Celular Tumoral , Terapia de Reposição de Estrogênios , Feminino , Humanos , Mitose , Pregnenos/metabolismo , Receptores de Progesterona/metabolismo
8.
BMC Cancer ; 4: 27, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15212687

RESUMO

BACKGROUND: Recent evidence suggests that progesterone metabolites play important roles in regulating breast cancer. Previous studies have shown that tumorous tissues have higher 5alpha-reductase (5alphaR) and lower 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO) and 20alpha-HSO activities. The resulting higher levels of 5alpha-reduced progesterone metabolites such as 5alpha-pregnane-3,20-dione (5alphaP) in tumorous tissue promote cell proliferation and detachment, whereas the 4-pregnene metabolites, 4-pregnen-3alpha-ol-20-one (3alphaHP) and 4-pregnen-20alpha-ol-3-one (20alphaDHP), more prominent in normal tissue, have the opposite (anti-cancer-like) effects. The aim of this study was to determine if the differences in enzyme activities between tumorous and nontumorous breast tissues are associated with differences in progesterone metabolizing enzyme gene expression. METHODS: Semi-quantitative RT-PCR was used to compare relative expression (as a ratio of 18S rRNA) of 5alphaR type 1 (SRD5A1), 5alphaR type 2 (SRD5A2), 3alpha-HSO type 2 (AKR1C3), 3alpha-HSO type 3 (AKR1C2) and 20alpha-HSO (AKR1C1) mRNAs in paired (tumorous and nontumorous) breast tissues from 11 patients, and unpaired tumor tissues from 17 patients and normal tissues from 10 reduction mammoplasty samples. RESULTS: Expression of 5alphaR1 and 5alphaR2 in 11/11 patients was higher (mean of 4.9- and 3.5-fold, respectively; p < 0.001) in the tumor as compared to the paired normal tissues. Conversely, expression of 3alpha-HSO2, 3alpha-HSO3 and 20alpha-HSO was higher (2.8-, 3.9- and 4.4-fold, respectively; p < 0.001) in normal than in tumor sample. The mean tumor:normal expression ratios for 5alphaR1 and 5alphaR2 were about 35-85-fold higher than the tumor:normal expression ratios for the HSOs. Similarly, in the unmatched samples, the tumor:normal ratios for 5alphaR were significantly higher than the ratios for the HSOs. CONCLUSIONS: The study shows changes in progesterone metabolizing enzyme gene expression in human breast carcinoma. Expression of SRD5A1 (5alphaR1) and SRD5A2 (5alphaR2) is elevated, and expression of AKR1C1 (20alpha-HSO), AKR1C2 (3alpha-HSO3) and AKR1C3 (3alpha-HSO2) is reduced in tumorous as compared to normal breast tissue. The changes in progesterone metabolizing enzyme expression levels help to explain the increases in mitogen/metastasis inducing 5alphaP and decreases in mitogen/metastasis inhibiting 3alphaHP progesterone metabolites found in breast tumor tissues. Understanding what causes these changes in expression could help in designing protocols to prevent or reverse the changes in progesterone metabolism associated with breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , Carcinoma Ductal de Mama/enzimologia , Hidroxiesteroide Desidrogenases/genética , Progesterona/metabolismo , 20-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Adulto , Idoso , Membro C3 da Família 1 de alfa-Ceto Redutase , Feminino , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Pessoa de Meia-Idade , RNA Mensageiro/análise
9.
BMC Cancer ; 3: 9, 2003 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-12659654

RESUMO

BACKGROUND: Recent observations indicate that human tumorous breast tissue metabolizes progesterone differently than nontumorous breast tissue. Specifically, 5alpha-reduced metabolites (5alpha-pregnanes, shown to stimulate cell proliferation and detachment) are produced at a significantly higher rate in tumorous tissue, indicating increased 5alpha-reductase (5alphaR) activity. Conversely, the activities of 3alpha-hydroxysteroid oxidoreductase (3alpha-HSO) and 20alpha-HSO enzymes appeared to be higher in normal tissues. The elevated conversion to 5alpha-pregnanes occurred regardless of estrogen (ER) or progesterone (PR) receptor levels. To gain insight into these differences, the activities and expression of these progesterone converting enzymes were investigated in a nontumorigenic cell line, MCF-10A (ER- and PR-negative), and the three tumorigenic cell lines, MDA-MB-231 (ER- and PR-negative), MCF-7 and T-47D (ER- and PR-positive). METHODS: For the enzyme activity studies, either whole cells were incubated with [14C]progesterone for 2, 4, 8, and 24 hours, or the microsomal/cytosolic fraction was incubated for 15-60 minutes with [3H]progesterone, and the metabolites were identified and quantified. Semi-quantitative RT-PCR was employed to determine the relative levels of expression of 5alphaR type1 (SRD5A1), 5alphaR type 2 (SRD5A2), 20alpha-HSO (AKR1C1), 3alpha-HSO type 2 (AKR1C3), 3alpha-HSO type 3 (AKR1C2) and 3beta-HSO (HSD3B1/HSD3B2) in the four cell lines using 18S rRNA as an internal control. RESULTS: The relative 5alpha-reductase activity, when considered as a ratio of 5alpha-pregnanes/4-pregnenes, was 4.21 (+/- 0.49) for MCF-7 cells, 6.24 (+/- 1.14) for MDA-MB-231 cells, 4.62 (+/- 0.43) for T-47D cells and 0.65 (+/- 0.07) for MCF-10A cells, constituting approximately 6.5-fold, 9.6-fold and 7.1 fold higher conversion to 5alpha-pregnanes in the tumorigenic cells, respectively, than in the nontumorigenic MCF-10A cells. Conversely, the 20alpha-HSO and 3alpha-HSO activities were significantly higher (p < 0.001) in MCF-10A cells than in the other three cell types. In the MCF-10A cells, 20alpha-HSO activity was 8-14-fold higher and the 3alpha-HSO activity was 2.5-5.4-fold higher than in the other three cell types. The values of 5alphaR:20alpha-HSO ratios were 16.9-32.6-fold greater and the 5alphaR:3alpha-HSO ratios were 5.2-10.5-fold greater in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. RT-PCR showed significantly higher expression of 5alphaR1 (p < 0.001), and lower expression of 20alpha-HSO (p < 0.001), 3alpha-HSO2 (p < 0.001), 3alpha-HSO3 (p < 0.001) in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. CONCLUSION: The findings provide the first evidence that the 5alphaR activity (leading to the conversion of progesterone to the cancer promoting 5alpha-pregnanes) is significantly higher in the tumorigenic MCF-7, MDA-MB-231 and T-47D breast cell lines than in the nontumorigenic MCF-10A cell line. The higher 5alphaR activity coincides with significantly greater expression of 5alphaR1. On the other hand, the activities of 20alpha-HSO and 3alpha-HSO are higher in the MCF-10A cells than in MCF-7, MDA-MB-231 and T-47D cells; these differences in activity correlate with significantly higher expression of 20alpha-HSO, 3alpha-HSO2 and 3alpha-HSO3 in MCF-10A cells. Changes in progesterone metabolizing enzyme expression (resulting in enzyme activity changes) may be responsible for stimulating breast cancer by increased production of tumor-promoting 5alpha-pregnanes and decreased production of anti-cancer 20alpha--and 3alpha-4-pregnenes.


Assuntos
20-alfa-Hidroxiesteroide Desidrogenase/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Neoplasias da Mama/enzimologia , Colestenona 5 alfa-Redutase/metabolismo , Progesterona/metabolismo , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Linhagem Celular Tumoral/enzimologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...