Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36549662

RESUMO

Metal cations have been exploited for their precipitation properties in a wide variety of studies, ranging from differentiating proteins from serum and blood to identifying the protein targets of drugs. Despite widespread recognition of this phenomenon, the mechanisms of metal-induced protein aggregation have not been fully elucidated. Recent studies have suggested that copper's (Cu) ability to induce protein aggregation may be a main contributor to Cu-induced cell death. Here, we provide the first proteome-wide analysis of the relative sensitivities of proteins across the Escherichia coli proteome to Cu-induced aggregation. We utilize a metal-induced protein precipitation (MiPP) methodology that relies on quantitative bottom-up proteomics to define the metal concentration-dependent precipitation properties of proteins on a proteomic scale. Our results establish that Cu far surpasses other metals in promoting protein aggregation and that the protein aggregation is reversible upon metal chelation. The bulk of the Cu bound in the protein aggregates is Cu1+, regardless of the Cu2+ source. Analysis of our MiPP data allows us to investigate underlying biophysical characteristics that determine a protein's sensitivity to Cu-induced aggregation, which is independent of the relative concentration of protein in the lysate. Overall, this analysis provides new insights into the mechanism behind Cu cytotoxicity, as well as metal cation-induced protein aggregation.


Assuntos
Cobre , Escherichia coli , Cobre/metabolismo , Escherichia coli/metabolismo , Proteoma/metabolismo , Proteômica , Agregados Proteicos
2.
J Am Chem Soc ; 144(9): 3925-3938, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213151

RESUMO

The intermolecular interactions of noble gases in biological systems are associated with numerous biochemical responses, including apoptosis, inflammation, anesthesia, analgesia, and neuroprotection. The molecular modes of action underlying these responses are largely unknown. This is in large part due to the limited experimental techniques to study protein-gas interactions. The few techniques that are amenable to such studies are relatively low-throughput and require large amounts of purified proteins. Thus, they do not enable the large-scale analyses that are useful for protein target discovery. Here, we report the application of stability of proteins from rates of oxidation (SPROX) and limited proteolysis (LiP) methodologies to detect protein-xenon interactions on the proteomic scale using protein folding stability measurements. Over 5000 methionine-containing peptides and over 5000 semi-tryptic peptides, mapping to ∼1500 and ∼950 proteins, respectively, in the yeast proteome, were assayed for Xe-interacting activity using the SPROX and LiP techniques. The SPROX and LiP analyses identified 31 and 60 Xe-interacting proteins, respectively, none of which were previously known to bind Xe. A bioinformatics analysis of the proteomic results revealed that these Xe-interacting proteins were enriched in those involved in ATP-driven processes. A fraction of the protein targets that were identified are tied to previously established modes of action related to xenon's anesthetic and organoprotective properties. These results enrich our knowledge and understanding of biologically relevant xenon interactions. The sample preparation protocols and analytical methodologies developed here for xenon are also generally applicable to the discovery of a wide range of other protein-gas interactions in complex biological mixtures, such as cell lysates.


Assuntos
Proteômica , Xenônio , Peptídeos , Dobramento de Proteína , Estabilidade Proteica , Proteoma/química , Proteômica/métodos
3.
ACS Chem Biol ; 16(1): 214-224, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33305953

RESUMO

The ability of metal ionophores to induce cellular metal hyperaccumulation endows them with potent antimicrobial activity; however, the targets and mechanisms behind these outcomes are not well understood. This work describes the first utilization of proteome-wide measurements of protein folding stability in combination with protein expression level analysis to identify protein targets of copper, thereby providing new insight into ionophore-induced copper toxicity in E. coli. The protein folding stability analysis employed a one-pot protocol for pulse proteolysis (PP) in combination with a semi-tryptic peptide enrichment strategy for proteolysis procedures (STEPP) to generate stability profiles for proteins in cell lysates derived from E. coli exposed to copper with and without two ionophores, the antimicrobial agent pyrithione and its ß-lactamase-activated prodrug, PcephPT. As part of this work, the above cell lysates were also subject to protein expression level analysis using conventional quantitative bottom-up proteomic methods. The protein folding stability and expression level profiles generated here enabled the effects of ionophore vs copper to be distinguished and revealed copper-driven stability changes in proteins involved in processes spanning metabolism, translation, and cell redox homeostasis. The 159 differentially stabilized proteins identified in this analysis were significantly more numerous (∼3×) than the 53 proteins identified with differential expression levels. These results illustrate the unique information that protein stability measurements can provide to decipher metal-dependent processes in drug mode of action studies.


Assuntos
Cobre/toxicidade , Escherichia coli/efeitos dos fármacos , Dobramento de Proteína , Estabilidade Proteica , Proteoma/química , Escherichia coli/metabolismo
4.
J Am Soc Mass Spectrom ; 31(2): 217-226, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32031398

RESUMO

Recently, several mass-spectrometry- and protein-denaturation-based proteomic methods have been developed to facilitate protein target discovery efforts in drug mode-of-action studies. These methods, which include the stability of proteins from rates of oxidation (SPROX), pulse proteolysis (PP), chemical denaturation and protein precipitation (CPP), and thermal proteome profiling (TPP) techniques, have been used in an increasing number of applications in recent years. However, while the advantages and disadvantages to using these different techniques have been reviewed, the analytical characteristics of these methods have not been directly compared. Reported here is such a direct comparison using the well-studied immunosuppressive drug, cyclosporine A (CsA), and the proteins in a yeast cell lysate. Also described is a one-pot strategy that can be utilized with each technique to streamline data acquisition and analysis. We find that there are benefits to utilizing all four strategies for protein target discovery including increased proteomic coverage and reduced false positive rates that approach 0%. Moreover, the one-pot strategy described here makes such an experiment feasible, because of the 10-fold reduction in reagent costs and instrument time it affords.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Ciclosporina/química , Ciclosporina/metabolismo , Desenvolvimento de Medicamentos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxirredução , Desnaturação Proteica , Estabilidade Proteica , Proteólise , Proteoma/análise , Proteoma/química , Proteoma/metabolismo
5.
Anal Chem ; 90(23): 14039-14047, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403842

RESUMO

Described here is a chemo-selective enrichment strategy, termed the semitryptic peptide enrichment strategy for proteolysis procedures (STEPP), to isolate the semitryptic peptides generated in mass spectrometry-based proteome-wide applications of limited proteolysis methods. The strategy involves reacting the ε-amino groups of lysine side chains and any N-termini created in the limited proteolysis reaction with isobaric mass tags. A subsequent digestion of the sample with trypsin and the chemo-selective reaction of the newly exposed N-termini of the tryptic peptides with N-hydroxysuccinimide (NHS)-activated agarose resin removes the tryptic peptides from solution, leaving only the semitryptic peptides with one nontryptic cleavage site generated in the limited proteolysis reaction for subsequent LC-MS/MS analysis. As part of this work, the STEPP technique is interfaced with two different proteolysis methods, including the pulse proteolysis (PP) and limited proteolysis (LiP) methods. The STEPP-PP workflow is evaluated in two proof-of-principle experiments involving the proteins in a yeast cell lysate and two well-studied drugs, cyclosporin A and geldanamycin. The STEPP-LiP workflow is evaluated in a proof-of-principle experiment involving the proteins in two cell culture models of human breast cancer, MCF-7 and MCF-10A cell lines. The STEPP protocol increased the number of semitryptic peptides detected in the LiP and PP experiments by 5- to 10-fold. The STEPP protocol not only increases the proteomic coverage, but also increases the amount of structural information that can be gleaned from limited proteolysis experiments. Moreover, the protocol also enables the quantitative determination of ligand binding affinities.


Assuntos
Peptídeos/metabolismo , Proteólise , Proteômica , Cromatografia Líquida , Humanos , Células MCF-7 , Peptídeos/química , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...