Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 778: 146149, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714100

RESUMO

The mobilization and transport of organic carbon (OC) in rivers and delivery to the near-coastal ocean are important processes in the carbon cycle that are affected by both climate and anthropogenic activities. Riverine OC transport can affect carbon sequestration, contaminant transport, ocean acidification, the formation of toxic disinfection by-products, ocean temperature and phytoplankton productivity. There have been many studies reporting temporal trends in OC concentrations in comparatively small streams with minimal anthropogenic influences but there have been fewer studies on larger rivers and fewer still that have investigated changes in OC concentration-discharge (C-Q) relations. This study examined changes in C-Q relations for total organic carbon (TOC) from 1973 to 2019 in 8 rivers in New England, USA. TOC concentrations declined in all rivers, and in most rivers, and in most seasons, the slope of the C-Q relation increased between 1973 to 1995 and 1996 to 2019. The increase in C-Q slope between periods may be related to changes in the magnitude of TOC sources. The most likely sources to have changed are wastewater inputs, urban runoff, production through photosynthesis in aquatic systems, and runoff from agricultural and forestry practices. Changes in wetland abundance and changes in sulfate concentrations can be ruled out as drivers of the observed changes in C-Q.

2.
J Environ Qual ; 45(5): 1696-1704, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695770

RESUMO

Nitrogen sources in the Mississippi River basin have been linked to degradation of stream ecology and to Gulf of Mexico hypoxia. In 2013, the USGS and the USEPA characterized water quality stressors and ecological conditions in 100 wadeable streams across the midwestern United States. Wet conditions in 2013 followed a severe drought in 2012, a weather pattern associated with elevated nitrogen concentrations and loads in streams. Nitrate concentrations during the May to August 2013 sampling period ranged from <0.04 to 41.8 mg L as N (mean, 5.31 mg L). Observed mean May to June nitrate concentrations at the 100 sites were compared with May to June concentrations predicted from a regression model developed using historical nitrate data. Observed concentrations for 17 sites, centered on Iowa and southern Minnesota, were outside the 95% confidence interval of the regression-predicted mean, indicating that they were anomalously high. The sites with a nitrate anomaly had significantly higher May to June nitrate concentrations than sites without an anomaly (means, 19.8 and 3.6 mg L, respectively) and had higher antecedent precipitation indices, a measure of the departure from normal precipitation, in 2012 and 2013. Correlations between nitrate concentrations and watershed characteristics and nitrogen and oxygen isotopes of nitrate indicated that fertilizer and manure used in crop production, principally corn, were the dominant sources of nitrate. The anomalously high nitrate levels in parts of the Midwest in 2013 coincide with reported higher-than-normal nitrate loads in the Mississippi River.


Assuntos
Secas , Nitratos/análise , Monitoramento Ambiental , Iowa , Meio-Oeste dos Estados Unidos , Mississippi , Rios , Estados Unidos
3.
J Environ Qual ; 37(3): 1145-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453434

RESUMO

Pesticide leaching through variably thick soils beneath agricultural fields in Morgan Creek, Maryland was simulated for water years 1995 to 2004 using LEACHM (Leaching Estimation and Chemistry Model). Fifteen individual models were constructed to simulate five depths and three crop rotations with associated pesticide applications. Unsaturated zone thickness averaged 4.7 m but reached a maximum of 18.7 m. Average annual recharge to ground water decreased from 15.9 to 11.1 cm as the unsaturated zone increased in thickness from 1 to 10 m. These point estimates of recharge are at the lower end of previously published values, which used methods that integrate over larger areas capturing focused recharge in the numerous detention ponds in the watershed. The total amount of applied and leached masses for five parent pesticide compounds and seven metabolites were estimated for the 32-km2 Morgan Creek watershed by associating each hectare to the closest one-dimensional model analog of model depth and crop rotation scenario as determined from land-use surveys. LEACHM parameters were set such that branched, serial, first-order decay of pesticides and metabolites was realistically simulated. Leaching is predicted to be greatest for shallow soils and for persistent compounds with low sorptivity. Based on simulation results, percent parent compounds leached within the watershed can be described by a regression model of the form e(-depth) (a ln t1/2-b ln K OC) where t1/2 is the degradation half-life in aerobic soils, K OC is the organic carbon normalized sorption coefficient, and a and b are fitted coefficients (R2 = 0.86, p value = 7 x 10(-9)).


Assuntos
Praguicidas/química , Poluentes do Solo/química , Poluentes Químicos da Água/química , Clima , Meia-Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...