Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513945

RESUMO

DNA mismatch repair deficiency (dMMR) is associated with the microsatellite instability (MSI) phenotype and leads to increased mutation load, which in turn may impact anti-tumor immune responses and treatment effectiveness. Various mutational signatures directly linked to dMMR have been described for primary cancers. To investigate which mutational signatures are associated with prognosis in gastric cancer, we performed a de novo extraction of mutational signatures in a cohort of 787 patients. We detected three dMMR-related signatures, one of which clearly discriminates tumors with MLH1 gene silencing caused by promoter hypermethylation (area under the curve = 98%). We then demonstrated that samples with the highest exposure of this signature share features related to better prognosis, encompassing clinical and molecular aspects and altered immune infiltrate composition. Overall, the assessment of the prognostic value and of the impact of modifications in MMR-related genes on shaping specific dMMR mutational signatures provides evidence that classification based on mutational signature exposure enables prognosis stratification.

2.
Sci Rep ; 9(1): 15751, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673055

RESUMO

The mutagenic repair of Cas9 generated breaks is thought to predominantly rely on non-homologous end-joining (NHEJ), leading to insertions and deletions within DNA that culminate in gene knock-out (KO). In this study, by taking focused as well as genome-wide approaches, we show that this pathway is dispensable for the repair of such lesions. Genetic ablation of NHEJ is fully compensated for by alternative end joining (alt-EJ), in a POLQ-dependent manner, resulting in a distinct repair signature with larger deletions that may be exploited for large-scale genome editing. Moreover, we show that cells deficient for both NHEJ and alt-EJ were still able to repair CRISPR-mediated DNA double-strand breaks, highlighting how little is yet known about the mechanisms of CRISPR-based genome editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP90/genética , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Proc Natl Acad Sci U S A ; 116(9): 3774-3783, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808763

RESUMO

Establishing causal links between bacterial metabolites and human intestinal disease is a significant challenge. This study reveals the molecular basis of antibiotic-associated hemorrhagic colitis (AAHC) caused by intestinal resident Klebsiella oxytoca Colitogenic strains produce the nonribosomal peptides tilivalline and tilimycin. Here, we verify that these enterotoxins are present in the human intestine during active colitis and determine their concentrations in a murine disease model. Although both toxins share a pyrrolobenzodiazepine structure, they have distinct molecular targets. Tilimycin acts as a genotoxin. Its interaction with DNA activates damage repair mechanisms in cultured cells and causes DNA strand breakage and an increased lesion burden in cecal enterocytes of colonized mice. In contrast, tilivalline binds tubulin and stabilizes microtubules leading to mitotic arrest. To our knowledge, this activity is unique for microbiota-derived metabolites of the human intestine. The capacity of both toxins to induce apoptosis in intestinal epithelial cells-a hallmark feature of AAHC-by independent modes of action, strengthens our proposal that these metabolites act collectively in the pathogenicity of colitis.


Assuntos
Enterocolite Pseudomembranosa/genética , Enterotoxinas/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Klebsiella oxytoca/genética , Animais , Benzodiazepinonas/metabolismo , Benzodiazepinonas/toxicidade , Dano ao DNA/efeitos dos fármacos , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/biossíntese , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Intestinos/microbiologia , Intestinos/patologia , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca/metabolismo , Klebsiella oxytoca/patogenicidade , Camundongos , Microtúbulos/efeitos dos fármacos , Oxiquinolina/análogos & derivados , Oxiquinolina/metabolismo , Oxiquinolina/toxicidade , Peptídeos/metabolismo , Peptídeos/toxicidade
5.
Cell Rep ; 26(3): 555-563.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650350

RESUMO

We provide a catalog for the effects of the human kinome on cell survival in response to DNA-damaging agents, covering all major DNA repair pathways. By treating 313 kinase-deficient cell lines with ten diverse DNA-damaging agents, including seven commonly used chemotherapeutics, we identified examples of vulnerability and resistance that are kinase specific. To investigate synthetic lethal interactions, we tested the response to carmustine for 25 cell lines by establishing a phenotypic fluorescence-activated cell sorting (FACS) assay designed to validate gene-drug interactions. We show apoptosis, cell cycle changes, and DNA damage and proliferation after alkylation- or crosslink-induced damage. In addition, we reconstitute the cellular sensitivity of DYRK4, EPHB6, MARK3, and PNCK as a proof of principle for our study. Furthermore, using global phosphoproteomics on cells lacking MARK3, we provide evidence for its role in the DNA damage response. Our data suggest that cancers with inactivating mutations in kinases, including MARK3, are particularly vulnerable to alkylating chemotherapeutic agents.


Assuntos
Dano ao DNA/fisiologia , Humanos , Transdução de Sinais
7.
Nat Commun ; 9(1): 2280, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891926

RESUMO

Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.


Assuntos
Reparo do DNA/genética , Reparo do DNA/fisiologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Instabilidade Cromossômica , Dano ao DNA , Anemia de Fanconi/terapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/deficiência , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Técnicas de Inativação de Genes , Terapia Genética , Histonas/metabolismo , Humanos , Mutação , Rad51 Recombinase/metabolismo , Proteases Específicas de Ubiquitina/deficiência , Ubiquitinação
8.
Nat Commun ; 8(1): 1238, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089570

RESUMO

Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.


Assuntos
Reparo do DNA/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Anemia de Fanconi/genética , RecQ Helicases/genética , Sistemas CRISPR-Cas , Linhagem Celular , Dano ao DNA , DNA Helicases/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HEK293 , Haploidia , Humanos , Mutagênese Insercional , NAD(P)H Desidrogenase (Quinona)/genética
9.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149600

RESUMO

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Acetoexamida/farmacologia , Linhagem Celular Tumoral , DNA Glicosilases/biossíntese , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Masculino
10.
Cell Death Dis ; 7(10): e2419, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27735950

RESUMO

Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.


Assuntos
Ciclo Celular , Transformação Celular Neoplásica/patologia , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Osso e Ossos/patologia , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/metabolismo , Extremidades/patologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteogênese , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Transdução Genética
11.
Cell Rep ; 15(4): 893-908, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27149854

RESUMO

The cellular response to replication stress requires the DNA-damage-responsive kinase ATM and its cofactor ATMIN; however, the roles of this signaling pathway following replication stress are unclear. To identify the functions of ATM and ATMIN in response to replication stress, we utilized both transcriptomics and quantitative mass-spectrometry-based phosphoproteomics. We found that replication stress induced by aphidicolin triggered widespread changes in both gene expression and protein phosphorylation patterns. These changes gave rise to distinct early and late replication stress responses. Furthermore, our analysis revealed previously unknown targets of ATM and ATMIN downstream of replication stress. We demonstrate ATMIN-dependent phosphorylation of H2AX and of CRMP2, a protein previously implicated in Alzheimer's disease but not in the DNA damage response. Overall, our dataset provides a comprehensive resource for discovering the cellular responses to replication stress and, potentially, associated pathologies.

12.
PLoS Genet ; 11(11): e1005645, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26544571

RESUMO

Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA , Ativação Linfocitária/fisiologia , Proteínas Nucleares/fisiologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Colite/imunologia , Dano ao DNA , Proteínas de Ligação a DNA , Imunofenotipagem , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Baço/citologia , Baço/metabolismo
13.
DNA Repair (Amst) ; 24: 122-130, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262557

RESUMO

Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Afidicolina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular/fisiologia , Segregação de Cromossomos , Dano ao DNA/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
14.
Arch Biochem Biophys ; 534(1-2): 88-97, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23466243

RESUMO

Increasing global birth rate, coupled with the aging population surviving into their eighth decade has lead to increased incidence diseases, hitherto designated as rare. Brain related ischemia, at birth, or later in life, during, for example stroke, is increasing in global prevalence. Reactive microglia can contribute to neuronal damage as well as compromising transplantion. One potential treatment strategy is cellular therapy, using mesenchymal stem cells (hMSCs), which possess immunomodulatory and cell repair properties. For effective clinical therapy, mechanisms of action must be understood better. Here multicentre international laboratories assessed this question together investigating application of hMSCs neural involvement, with interest in the role of reactive microglia. Modulation by hMSCs in our in vivo and in vitro study shows they decrease markers of microglial activation (lower ED1 and Iba) and astrogliosis (lower GFAP) following transplantation in an ouabain-induced brain ischemia rat model and in organotypic hippocampal cultures. The anti-inflammatory effect in vitro was demonstrated to be CD200 ligand dependent with ligand expression shown to be increased by IL-4 stimulation. hMSC transplant reduced rat microglial STAT3 gene expression and reduced activation of Y705 phosphorylated STAT3, but STAT3 in the hMSCs themselves was elevated upon grafting. Surprisingly, activity was dependent on heterodimerisation with STAT1 activated by IL-4 and Oncostatin M. Our study paves the way to preclinical stages of a clinical trial with hMSC, and suggests a non-canonical JAK-STAT signaling of unphosphorylated STAT3 in immunomodulatory effects of hMSCs.


Assuntos
Lesões Encefálicas/imunologia , Isquemia Encefálica/metabolismo , Inflamação/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Lesões Encefálicas/metabolismo , Isquemia Encefálica/imunologia , Antígenos CD40/genética , Técnicas de Cocultura , Ectodisplasinas/metabolismo , Hipocampo/citologia , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Fatores Imunológicos/genética , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Modelos Animais , Fosforilação , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Cordão Umbilical/citologia
15.
Cells Tissues Organs ; 197(4): 249-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343517

RESUMO

Compelling evidence for the existence of somatic stem cells in the heart of different mammalian species has been provided by numerous groups; however, so far it has not been possible to maintain these cells as self-renewing and phenotypically stable clonal cell lines in vitro. Thus, we sought to identify a surrogate stem cell niche for the isolation and persistent maintenance of stable clonal cardiovascular progenitor cell lines, enabling us to study the mechanism of self-renewal and differentiation in these cells. Using postnatal murine hearts with a selectable marker as the stem cell source and embryonic stem cells and leukemia inhibitory factor (LIF)-secreting fibroblasts as a surrogate niche, we succeeded in the isolation of stable clonal cardiovascular progenitor cell lines. These cell lines self-renew in an LIF-dependent manner. They express both stemness transcription factors Oct4, Sox2, and Nanog and early myocardial transcription factors Nkx2.5, GATA4, and Isl-1 at the same time. Upon LIF deprivation, they exclusively differentiate to functional cardiomyocytes and endothelial and smooth muscle cells, suggesting that these cells are mesodermal intermediates already committed to the cardiogenic lineage. Cardiovascular progenitor cell lines can be maintained for at least 149 passages over 7 years without phenotypic changes, in the presence of LIF-secreting fibroblasts. Isolation of wild-type cardiovascular progenitor cell lines from adolescent and old mice has finally demonstrated the general feasibility of this strategy for the isolation of phenotypically stable somatic stem cell lines.


Assuntos
Células-Tronco Embrionárias/citologia , Fator Inibidor de Leucemia/metabolismo , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Técnicas Citológicas/métodos , Embrião de Mamíferos , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...