Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38930641

RESUMO

Among the different techniques for monitoring the flow rate of various fluids, thermal flow sensors stand out for their straightforward measurement technique. However, the main drawback of these types of sensors is their dependency on the thermal properties of the medium, i.e., thermal conductivity (k), and volumetric heat capacity (ρcp). They require calibration whenever the fluid in the system changes. In this paper, we present a single hot wire suspended above a V-groove cavity that is used to measure k and ρcp through DC and AC excitation for both pure gases and binary gas mixtures, respectively. The unique characteristic of the proposed sensor is its independence of the flow velocity, which makes it possible to detect the medium properties while the fluid flows over the sensor chip. The measured error due to fluctuations in flow velocity is less than ±0.5% for all test gases except for He, where it is ±6% due to the limitations of the measurement setup. The working principle and measurement results are discussed.

2.
Micromachines (Basel) ; 15(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38258233

RESUMO

This paper presents the first nickel-plated micro-Coriolis mass-flow sensor with integrated optical readout. The sensor consists of a freely suspended tube made of electroplated nickel with a total length of 60 mm, an inner diameter of 580 µm, and a wall thickness of approximately 8 µm. The U-shaped tube is actuated by Lorentz forces. An optical readout consisting of two LEDs and two phototransistors is used to detect the tube motion. Mass-flow measurements were performed at room temperature with water and isopropyl alcohol for flows up to 200 g/h and 100 g/h, respectively. The measured resonance frequencies were 1.67 kHz and 738 Hz for water and 1.70 kHz and 752 Hz for isopropyl alcohol for the twist and swing modes, respectively. The measured phase shift between the two readout signals shows a linear response to mass flow with very similar sensitivities for water and isopropyl alcohol of 0.41mdegg/h and 0.43 mdegg/h, respectively.

3.
Micromachines (Basel) ; 14(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512591

RESUMO

This paper presents a novel gas-independent thermal flow sensor chip featuring three calorimetric flow sensors for measuring flow profile and direction within a tube, along with a single-wire flow independent thermal conductivity sensor capable of identifying the gas type through a simple DC voltage measurement. All wires have the same dimensions of 2000 µm in length, 5 µm in width, and 1.2 µm in thickness. The design theory and COMSOL simulation are discussed and compared with the measurement results. The sensor's efficacy is demonstrated with different gases, He, N2, Ar, and CO2, for thermal conductivity and thermal flow measurements. The sensor can accurately measure the thermal conductivity of various gases, including air, enabling correction of flow rate measurements based on the fluid type. The measured voltage from the thermal conductivity sensor for air corresponds to a calculated thermal conductivity of 0.02522 [W/m·K], with an error within 2.9%.

4.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112403

RESUMO

This paper presents the modeling, fabrication, and testing of a 3D-printed Coriolis mass flow sensor. The sensor contains a free-standing tube with a circular cross-section printed using the LCD 3D-printing technique. The tube has a total length of 42 mm, an inner diameter of about 900 µm, and a wall thickness of approximately 230 µm. The outer surface of the tube is metalized using a Cu plating process, resulting in a low electrical resistance of 0.5 Ω. The tube is brought into vibration using an AC current in combination with a magnetic field from a permanent magnet. The displacement of the tube is detected using a laser Doppler vibrometer (LDV) that is part of a Polytec MSA-600 microsystem analyzer. The Coriolis mass flow sensor has been tested over a flow range of 0-150 g/h for water, 0-38 g/h for isopropyl alcohol (IPA), and 0-50 g/h for nitrogen. The maximum flow rates of water and IPA resulted in less than a 30 mbar pressure drop. The pressure drop at the maximum flow rate of nitrogen is 250 mbar.

5.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363929

RESUMO

In micro-machined micro-electromechanical systems (MEMS), refilled high-aspect-ratio trench structures are used for different applications. However, these trenches often show keyholes, which have an impact on the performance of the devices. In this paper, explanations are given on keyhole formation, and a method is presented for etching positively-tapered high-aspect ratio trenches with an optimised trench entrance to prevent keyhole formation. The trench etch is performed by a two-step Bosch-based process, in which the cycle time, platen power, and process pressure during the etch step of the Bosch cycle are studied to adjust the dimensions of the scallops and their location in the trench sidewall, which control the taper of the trench sidewall. It is demonstrated that the amount of chemical flux, being adjusted by the cycle time of the etch step in the Bosch cycle, relates the scallop height to the sidewall profile angle. The required positive tapering of 88° to 89° for a keyhole-free structure after a trench refill by low-pressure chemical vapour deposition is achieved by lowering the time of the etch step.

6.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062634

RESUMO

A micro-Coriolis mass flow sensor is a resonating device that measures small mass flows of fluid. A large vibration amplitude is desired as the Coriolis forces due to mass flow and, accordingly, the signal-to-noise ratio, are directly proportional to the vibration amplitude. Therefore, it is important to maximize the quality factor Q so that a large vibration amplitude can be achieved without requiring high actuation voltages and high power consumption. This paper presents an investigation of the Q factor of different devices in different resonant modes. Q factors were measured both at atmospheric pressure and in vacuum. The measurement results are compared with theoretical predictions. In the atmospheric environment, the Q factor increases when the resonance frequency increases. When reducing the pressure from 1 bar to 0.1 bar, the Q factor almost doubles. At even lower pressures, the Q factor is inversely proportional to the pressure until intrinsic effects start to dominate, resulting in a maximum Q factor of approximately 7200.

7.
Micromachines (Basel) ; 11(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486348

RESUMO

Surface Channel Technology is known as the fabrication platform to make free-hanging microchannels for various microfluidic sensors and actuators. In this technology, thin film metal electrodes, such as platinum or gold, are often used for electrical sensing and actuation purposes. As a result that they are located at the top surface of the microfluidic channels, only topside sensing and actuation is possible. Moreover, in microreactor applications, high temperature degradation of thin film metal layers limits their performance as robust microheaters. In this paper, we report on an innovative idea to make microfluidic devices with integrated silicon sidewall electrodes, and we demonstrate their use as microheaters. This is achieved by modifying the original Surface Channel Technology with optimized mask designs. The modified technology allows to embed heavily-doped bulk silicon electrodes in between the sidewalls of two adjacent free-hanging microfluidic channels. The bulk silicon electrodes have the same electrical properties as the extrinsic silicon substrate. Their cross-sectional geometry and overall dimensions can be designed by optimizing the mask design, hence the resulting resistance of each silicon electrode can be customized. Furthermore, each silicon electrode can be electrically insulated from the silicon substrate. They can be designed with large cross-sectional areas and allow for high power dissipation when used as microheater. A demonstrator device is presented which reached 119 . 4 ∘ C at a power of 206 . 9 m W , limited by thermal conduction through the surrounding air. Other potential applications are sensors using the silicon sidewall electrodes as resistive or capacitive readout.

8.
Micromachines (Basel) ; 11(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245134

RESUMO

In this paper, we present the design, simulation, fabrication and characterization of a microfluidic relative permittivity sensor in which the fluid flows through an interdigitated electrode structure. Sensor fabrication is based on an silicon on insulator (SOI) wafer where the fluidic inlet and outlet are etched through the handle layer and the interdigitated electrodes are made in the device layer. An impedance analyzer was used to measure the impedance between the interdigitated electrodes for various non-conducting fluids with a relative permittivity ranging from 1 to 41. The sensor shows good linearity over this range of relative permittivity and can be integrated with other microfluidic sensors in a multiparameter chip.

9.
Micromachines (Basel) ; 11(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106462

RESUMO

Fast point-of-use detection of, for example, early-stage zoonoses, e.g., Q-fever, bovine tuberculosis, or the Covid-19 coronavirus, is beneficial for both humans and animal husbandry as it can save lives and livestock. The latter prevents farmers from going bankrupt after a zoonoses outbreak. This paper describes the development of a fabrication process and the proof-of-principle of a disposable DNA amplification chip with an integrated heater. Based on the analysis of the milling process, metal adhesion studies, and COMSOL MultiPhysics heat transfer simulations, the first batch of chips has been fabricated and successful multiple displacement amplification reactions are performed inside these chips. This research is the first step towards the development of an early-stage zoonoses detection device. Tests with real zoonoses and DNA specific amplification reactions still need to be done.

10.
Micromachines (Basel) ; 11(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053956

RESUMO

This paper presents a µ -Coriolis mass flow sensor with resistive readout. Instead of measuring a net displacement such as in a capacitive readout, a resistive readout detects the deformation of the suspended micro-fluidic channel. It allows for actuation at much higher amplitudes than for a capacitive readout, resulting in correspondingly larger Coriolis forces in response to fluid flow. A resistive readout can be operated in two actuation vibrational modes. A capacitive readout can only be operated in one of these two modes, which is more sensitive to external disturbances. Three types of devices have been realized. We present measurement results for all three devices. One device clearly outperforms the other two, with a flow sensitivity of 2.22 ∘ / ( g / h ) and a zero-flow stability of 0.02 g / h over 30 min. Optimization of the metal strain gauges and/or implementation of poly-Silicon strain gauges could further improve performance.

11.
Micromachines (Basel) ; 9(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30424421

RESUMO

Interface circuits for capacitive MEMS accelerometers are conventionally based on charge-based approaches. A promising alternative to these is provided by frequency-based readout techniques that have some unique advantages as well as a few challenges associated with them. This paper addresses these techniques and presents a derivation of the fundamental resolution limits that are imposed on them by phase noise. Starting with an overview of basic operating principles, associated properties and challenges, the discussions then focus on the fundamental trade-offs between noise, power dissipation and signal bandwidth (BW) for the LC-oscillator-based frequency readout and for the conventional charge-based switched-capacitor (SC) readout. Closed-form analytical formulas are derived to facilitate a fair comparison between the two approaches. Benchmarking results indicate that, with the same bandwidth requirement, charge-based readout circuits are more suitable when optimizing for noise performance, while there is still some room for frequency-based techniques when optimizing for power consumption, especially when flicker phase noise can be mitigated.

12.
J R Soc Interface ; 10(83): 20130162, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594816

RESUMO

In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications.


Assuntos
Materiais Biomiméticos , Biomimética , Cabelo , Sistema da Linha Lateral , Animais , Peixes/fisiologia , Mecanorreceptores , Modelos Biológicos
13.
Nanotechnology ; 17(4): S84-9, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21727359

RESUMO

Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...