Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776406

RESUMO

AIMS: Gene therapy with cardiac phosphodiesterases (PDEs) such as PDE4B has recently been described to effectively prevent heart failure in mice. However, exact molecular mechanisms of its beneficial effects, apart from general lowering of cardiomyocyte cyclic adenosine monophosphate (cAMP) levels, have not been elucidated. Here we studied whether gene therapy with two types of PDEs, namely PDE2A and PDE4B, can prevent pressure-overload induced heart failure in mice by acting on and restoring altered cAMP compartmentalization in distinct subcellular microdomains. METHODS AND RESULTS: Heart failure was induced by transverse aortic constriction followed by tail-vein injection of adeno-associated-virus type 9 vectors to overexpress PDE2A3, PDE4B3 or luciferase for 8 weeks. Heart morphology and function was assessed by echocardiography and histology which showed that PDE2A and especially PDE4B gene therapy could attenuate cardiac hypertrophy, fibrosis and decline of contractile function. Live cell imaging using targeted cAMP biosensors showed that PDE overexpression restored altered cAMP compartmentalization in microdomains associated with ryanodine receptor type 2 (RyR2) and caveolin-rich plasma membrane. This was accompanied by ameliorated caveolin-3 decline after PDE2A3 overexpression, reduced RyR2 phosphorylation in PDE4B3 overexpressing hearts and antiarrhythmic effects of both PDEs measured under isoproterenol stimulation in single cells. Strong association of overexpressed PDE4B but not PDE2A with RyR2 microdomain could prevent calcium leak and arrhythmias in human induced pluripotent stem derived cardiomyocytes with the A2254 V mutation in RyR2 causing catecholaminergic polymorphic ventricular tachycardia. CONCLUSIONS: Our data indicate that gene therapy with phosphodiesterases can prevent heart failure including associated cardiac remodeling and arrhythmias by restoring altered cAMP compartmentalization in functionally relevant subcellular microdomains.

2.
Cardiovasc Res ; 120(3): 273-285, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38099489

RESUMO

AIMS: Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon ß-adrenergic receptor (ß-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS: To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial ß2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of ß1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased ß2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION: These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Animais , Camundongos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , AMP Cíclico , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Volume Sistólico
3.
Biotechnol Bioeng ; 115(7): 1778-1792, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29573361

RESUMO

Functional mosaic analysis allows for the direct comparison of mutant cells with differentially marked control cells in the same organism. While this offers a powerful approach for elucidating the role of specific genes or signalling pathways in cell populations of interest, genetic strategies for generating functional mosaicism remain challenging. We describe a novel and streamlined approach for functional mosaic analysis, which combines stochastic Cre/lox recombination with gene targeting in the ROSA26 locus. With the RoMo strategy a cell population of interest is randomly split into a cyan fluorescent and red fluorescent subset, of which the latter overexpresses a chosen transgene. To integrate this approach into high-throughput gene targeting initiatives, we developed a procedure that utilizes Gateway cloning for the generation of new targeting vectors. RoMo can be used for gain-of-function experiments or for altering signaling pathways in a mosaic fashion. To demonstrate this, we developed RoMo-dnGs mice, in which Cre-recombined red fluorescent cells co-express a dominant-negative Gs protein. RoMo-dnGs mice allowed us to inhibit G protein-coupled receptor activation in a fraction of cells, which could then be directly compared to differentially marked control cells in the same animal. We demonstrate how RoMo-dnGs mice can be used to obtain mosaicism in the brain and in peripheral organs for various cell types. RoMo offers an efficient new approach for functional mosaic analysis that extends the current toolbox and may reveal important new insights into in vivo gene function.


Assuntos
Marcação de Genes/métodos , Loci Gênicos , RNA não Traduzido/genética , Recombinação Genética , Animais , Integrases/metabolismo , Camundongos , Mosaicismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...