Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(38): 8493-8499, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721973

RESUMO

The catalytic oxidation of CO and CH4 can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O2-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide. We present evidence that this change in the oxidation behavior is caused by a temperature-induced change in the stability of small PdO domains that initiate oxidation. Our discovery of the epitaxial PdO(100) structure may be significant for developing relationships among oxide structure, catalytic activity, and reaction conditions for applications of oxidation catalysis.

2.
ACS Catal ; 12(6): 3256-3268, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35359579

RESUMO

Co oxides and oxyhydroxides have been studied extensively in the past as promising electrocatalysts for the oxygen evolution reaction (OER) in neutral to alkaline media. Earlier studies showed the formation of an ultrathin CoO x (OH) y skin layer on Co3O4 at potentials above 1.15 V vs reversible hydrogen electrode (RHE), but the precise influence of this skin layer on the OER reactivity is still under debate. We present here a systematic study of epitaxial spinel-type Co3O4 films with defined (111) orientation, prepared on different substrates by electrodeposition or physical vapor deposition. The OER overpotential of these samples may vary up to 120 mV, corresponding to two orders of magnitude differences in current density, which cannot be accounted for by differences in the electrochemically active surface area. We demonstrate by a careful analysis of operando surface X-ray diffraction measurements that these differences are clearly correlated with the average thickness of the skin layer. The OER reactivity increases with the amount of formed skin layer, indicating that the entire three-dimensional skin layer is an OER-active interphase. Furthermore, a scaling relationship between the reaction centers in the skin layer and the OER activity is established. It suggests that two lattice sites are involved in the OER mechanism.

3.
Angew Chem Int Ed Engl ; 59(49): 21904-21908, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729209

RESUMO

Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between -0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm-2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3 O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.

4.
Nanoscale Adv ; 1(12): 4764-4771, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133116

RESUMO

Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.

5.
J Phys Chem Lett ; 8(5): 1067-1071, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28201875

RESUMO

Processes at material interfaces to liquids or to high-pressure gases often involve structural changes that are heterogeneous on the micrometer scale. We present a novel in situ X-ray scattering technique that uses high-energy photons and a transmission geometry for atomic-scale studies under these conditions. Transmission surface diffraction gives access to a large fraction of reciprocal space in a single acquisition, allowing direct imaging of the in-plane atomic arrangement at the interface. Experiments with focused X-ray beams enable mapping of these structural properties with micrometer spatial resolution. The potential of this new technique is illustrated by in situ studies of electrochemical surface phase transitions and deposition processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...