Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36171059

RESUMO

Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (IAF; ∼10 Hz), previous work suggests that IAF reflects a spatial mixture of different brain rhythms. In this study, we assess whether Independent Component Analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.Significance statementAlpha oscillations are the most prominent feature of the human brain's electrical activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha is usually considered a single brain rhythm that changes in power and frequency to support cognitive operations. We here show that posterior alpha entails at least two dissociable rhythms with distinct functions and characteristics. These findings could solve previous inconsistencies in the literature regarding the direction of task-related alpha power/frequency modulations and their relation to cognitive performance. In addition, the existence of two distinct posterior alpha rhythms could have important consequences for the design of neurostimulation protocols aimed at modulating alpha oscillations and subsequently cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...