Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 19(10): 681-690, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32624961

RESUMO

Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy - a fast, real-time, and label-free bio-sensing method - represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme-linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target-monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme-linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target-layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance-based system for continuous process monitoring.

2.
Clin Chem ; 51(10): 1962-72, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16081504

RESUMO

BACKGROUND: Acoustic sensors that exploit resonating quartz crystals directly detect the binding of an analyte to a receptor. Applications include detection of bacteria, viruses, and oligonucleotides and measurement of myoglobin, interleukin 1beta (IL-1beta), and enzyme cofactors. METHODS: Resonant Acoustic Profiling was combined with a microfluidic lateral flow device incorporating an internal reference control, stable linker chemistry, and immobilized receptors on a disposable sensor "chip". Analyte concentrations were determined by analyzing the rate of binding of the analyte to an appropriate receptor. RESULTS: The specificity and affinity of antibody-antigen and enzyme-cofactor interactions were determined without labeling of the receptor or the analyte. We measured protein concentrations (recombinant human IL-1beta and recombinant human myoglobin) and quantified binding of cofactors (NADP+ and NAD+) to the enzyme glucose dehydrogenase. Lower limits of detection were approximately 1 nmol/L (17 ng/mL) for both IL-1beta and human myoglobin. The equilibrium binding constant for NADP+ binding to glucose dehydrogenase was 2.8 mmol/L. CONCLUSIONS: Resonant Acoustic Profiling detects analytes in a relatively simple receptor-binding assay in <10 min. Potential applications include real-time immunoassays and biomarker detection. Combination of this technology platform with existing technologies for concentration and presentation of analytes may lead to simple, label-free, high-sensitivity methodologies for reagent and assay validation in clinical chemistry and, ultimately, for real-time in vitro diagnostics.


Assuntos
Acústica , Técnicas Biossensoriais/métodos , Glucose 1-Desidrogenase/análise , Interleucina-1/análise , Mioglobina/análise , Animais , Especificidade de Anticorpos , Técnicas Biossensoriais/instrumentação , Humanos , Camundongos , Técnicas Analíticas Microfluídicas/métodos , NAD/análise , NADP/análise , Proteínas Recombinantes/análise , Sensibilidade e Especificidade , Especificidade por Substrato , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...