Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37177276

RESUMO

Poly(ethylene oxide) block copolymers (PEOz BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+) conductivity for Li+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIxPSyPEOz), a pronounced maximum ion conductivity was reported for short PEOz molecular weights around 2 kg mol-1. To later enable a systematic exploration of the influence of the PIx and PSy block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz block length can be kept constant, while the PIx and PSy block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz chains to terminate PIxPSy BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIxPSyPEOz with narrow chain length distribution and a fixed PEOz block length of z = 1.9 kg mol-1 and a D = 1.03 are obtained. The successful quantitative end group modification of the PEOz block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+ conductivity in Li+ batteries.

2.
Phys Chem Chem Phys ; 25(6): 4810-4823, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36692378

RESUMO

Linear poly(alkylene carbonates) such as polyethylene carbonate (PEC) and polypropylene carbonate (PPC) have gained increasing interest due to their remarkable ion transport properties such as high Li+ transference numbers. The cause of these properties is not yet fully understood which makes it challenging to replicate them in other polymer electrolytes. Therefore, it is critical to understand the underlying mechanisms in polycarbonate electrolytes such as PPC. In this work we present insights from impedance spectroscopy, transference number measurements, PFG-NMR, IR and Raman spectroscopy as well as molecular dynamics simulations to address this issue. We find that in addition to plasticization, the lithium ion coordination by the carbonate groups of the polymer is weakened upon gelation, leading to a rapid exhange of the lithium ion solvation shell and consequently a strong increase of the conductivity. Moreover, we study the impact of the anions by employing different conducting salts. Interestingly, while the total conductivity decreases with increasing anion size, the reverse trend can be observed for the lithium ion transference numbers. Via our holistic approach, we demonstrate that this behavior can be attributed to differences in the collective ion dynamics.

3.
ACS Appl Mater Interfaces ; 13(51): 61067-61077, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34910464

RESUMO

The fast Li+ transportation of "polymer-in-ceramic" electrolytes is highly dependent on the long-range Li+ migration pathways, which are determined by the structure and chemistry of the electrolytes. Besides, Li dendrite growth may be promoted in the soft polymer region due to the inhomogeneous electric field caused by the commonly low Li+ transference number of the polymer. Herein, a single-ion-conducting polymer electrolyte is infiltrated into intertwined Li1.3Al0.3Ti1.7(PO4)3 (LATP) nanofibers to construct free-standing electrolyte membranes. The composite electrolyte possesses a large electrochemical window exceeding 5 V, a high ionic conductivity of 0.31 mS cm-1 at ambient temperature, and an extraordinary Li+ transference number of 0.94. The hybrid electrolyte in the lithium symmetric cell shows stable Li plating/stripping up to 2000 h under 0.1 mA cm-2 without dendrite formation. The Li|hybrid electrolyte|LiFePO4 battery exhibits enhanced rate capability up to 1 C and a stable cycling performance with an initial discharge capacity of 131.8 mA h g-1 and a retention capacity of 122.7 mA h g-1 after 500 cycles at 0.5 C at ambient temperature. The improved electrochemical performance is attributed to the synergistic effects of the LATP nanofibers and the single-ion-conducting polymer. The fibrous fast ion conductors provide continuous ion transport channels, and the polymer improves the interfacial contact with the electrodes and helps to suppress the Li dendrites.

4.
ChemistryOpen ; 10(3): 340-346, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33594838

RESUMO

This work examines the proton intercalation in vanadium pentoxide (V2 O5 ) thin films and its optical properties in the near-infrared (near-IR) region. Samples were prepared via direct current magnetron sputter deposition and cyclic voltammetry was used to characterize the insertion and extraction behavior of protons in V2 O5 in a trifluoroacetic acid containing electrolyte. With the same setup chronopotentiometry was done to intercalate a well-defined number of protons in the Hx V2 O5 system in the range of x=0 and x=1. These films were characterized with optical reflectometry in the near-IR region (between 700 and 1700 nm wavelength) and the refractive index n and extinction coefficient k were determined using Cauchy's dispersion model. The results show a clear correlation between proton concentration and n and k.

5.
Chemistry ; 24(32): 8061-8065, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626360

RESUMO

In searching for polymer-based electrolytes with improved performance for lithium ion and lithium metal batteries, we studied block copolymer electrolytes with high amounts of bis(trifluoromethane)sulfonimide lithium obtained by macromolecular co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) and the salt from tetrahydrofuran. Particularly, an ultra-short poly(ethylene oxide) block of 2100 g mol-1 was applied, giving rise to 2D continuous lamellar microstructures. The macroscopic stability was ensured with major blocks from poly(isoprene) and poly(styrene), which separated the ionic conductive PEO/salt lamellae. Thermal annealing led to high ionic conductivities of 1.4 mS cm-1 at 20 °C with low activation energy and a superior lithium ion transference number of 0.7, accompanied by an improved mechanical stability (storage modulus of up to 107  Pa). With high Li:O ratios >1, we show a viable concept to achieve fast Li+ transport in block copolymers (BCP), decoupled from slow polymer relaxation.

6.
Polymers (Basel) ; 10(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30961275

RESUMO

A modified polyphosphazene was synthesized using a mixed substitution at phosphorus consisting of 2-(2-methoxyethoxy)ethoxy side groups and anionic trifluoroborate groups. The primary goal was to increase the low lithium ion conductivities of the conventional lithium salt containing poly[2-(2-methoxyethoxy)ethoxy-phosphazene] (MEEP) by the immobilized anionic groups. As in previous studies, the mechanical stability was stabilized by UV induced radiation cross linking. By variation of the molar ratio between different side groups, mechanical and electrochemical properties are controllable. The polymer demonstrated large electrochemical stability windows ranging between 0 and 4.5 V versus the Li/Li⁺ reference. Total and lithium conductivities of 3.6 × 10-4 S·cm-1 and 1.8 × 10-5 S·cm-1 at 60 °C were revealed for the modified MEEP. When observed in special visualization cells, dendrite formation onset time and short-circuit time were determined as 21 h and 90 h, respectively, under constant current polarization (16 h and 65 h for MEEP, both with 15 wt % LiBOB), which hints to a more stable Li/polymer interface compared to normal MEEP. The enhanced dendrite suppression ability can be explained by the formation of a more conductive solid electrolyte interphase (SEI) and the existence of F-contained SEI components (such as LiF). With the addition of ethylene carbonate⁻dimethyl carbonate (EC/DMC) to form MEE-co-OBF3P gel polymer, both total and lithium conductivity were enhanced remarkably, and the lithium transference numbers reached reasonable values (σtotal = 1.05 mS·cm-1, σLi⁺ = 0.22 mS·cm-1, t Li + = 0.18 at 60 °C).

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 157: 220-226, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26774812

RESUMO

Combined computational/FTIR spectroscopic analyses of 3-methyl-2-oxazolidinone (NMO) solutions with varying molar ratios of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) are reported. Based on the second derivative spectral profile, overlapping peaks are distinguished as well as assigned to the vibrational modes of implicitly and explicitly interacting NMO molecules. Thereby, the geometry of a monomeric, a dimeric and a simplified solvation structure [Li(NMO)1](+) are optimized with a polarizable continuum model at a B3LYP theoretical level. With increasing contents of LiTFSI, the formation of Li(+) solvation structures is scrutinized by semi-quantitative analysis of deconvoluted integral peak areas for three different ring-related vibrations and C=O-stretch vibration. A discrepancy in the obtained data is observed implying the influence of the TFSI anion the ring-related vibrations are prone to. The solvation number of 4 is determined according to the C=O-signal in diluted solution, which is proven by the computed Gibbs free energy for solvation of [Li(NMO)4](+) in a NMO medium (-41.7 kcal mol(-1)).

8.
Phys Chem Chem Phys ; 16(46): 25583-600, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25351862

RESUMO

The ternary solid solution CeO2-ZrO2 is known for its superior performance as an oxygen storage catalyst in exhaust gas catalysis (e.g. TWC), although the defect chemical background of these outstanding properties is not fully understood quantitatively. Here, a comprehensive experimental study is reported regarding defects and defect-related transport properties of cubic stabilized single crystalline (CexZr1-x)0.8Y0.2O1.9-δ (0 ≤x≤ 1) solid solutions as a model system for CeO2-ZrO2. The constant fraction of yttria was chosen in order to fix a defined concentration of oxygen vacancies and to stabilize the cubic fluorite-type lattice for all Ce/Zr ratios. Measurements of the total electrical conductivity, the partial electronic conductivity, the ionic transference number and the non-stoichiometry (oxygen deficiency, oxygen storage capacity) were performed in the oxygen partial pressure range -25 < lg pO2/bar < 0 and for temperatures between 500 °C and 750 °C. The total conductivity at low pO2 is dominated by electronic transport. A strong deviation from the widely accepted ideal solution based point defect model was observed. An extended point defect model was developed using defect activities rather than concentrations in order to describe the point defect reactions in CeO2-ZrO2-Y2O3 properly. It served to obtain good quantitative agreement with the measured data. By a combination of values for non-stoichiometries and for electronic conductivities, the electron mobility could be calculated as a function of pO2, ranging between 10(-2) cm(2) V(-1) s(-1) and 10(-5) cm(2) V(-1) s(-1). Finally, the origin of the high oxygen storage capacity and superior catalytic promotion performance at a specific ratio of n(Ce)/n(Zr) ≈ 1 was attributed to two main factors: (1) a strongly enhanced electronic conductivity in the high and medium pO2 range qualifies the material to be a good mixed conductor, which is essential for a fast oxygen exchange and (2) the equilibrium constant for the reduction exhibits a maximum, which means that the reduction is thermodynamically most favoured just at this composition.

9.
Phys Chem Chem Phys ; 16(27): 14236-43, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24914737

RESUMO

Lithium cation solvation structures [Li(S)(n=1-4)](+) with ligands of cyclic or noncyclic carbamate-modified disiloxanes are optimized at B3LYP level of theory and compared to their corresponding simplified carbamates and to the organic carbonates ethylene carbonate (EC) and dimethyl carbonate (DMC). The electrostatic potentials (ESP) of these investigated carbonyl-containing solvents are mapped on the electron density surface. The maximum ESP is located at the C=O-oxygen, whereas the disiloxane functionality represents an unpolar residue. Natural Bond Orbitals (NBO) analysis reveals strong n(N) →π(C[double bond, length as m-dash]O) donor-acceptor interactions in carbamates which outrun dipolar properties. As a result, higher total binding energies (ΔE(B)) for solvation of Li(+) in carbamates (-148 kcal mol(-1)) are found than for carbonates (-137 kcal mol(-1)). Furthermore, the disiloxane moiety with its Si-O bond is stabilized by n(O) →σ*(Si-C) hyperconjugation that provides additional electron density to a nearby SiCH3 methyl group thus supporting an additional SiCH2-H...Li(+) coordination. The formation of all investigated solvation structures is exothermic. Owing to steric hindrance of noncyclic carbonyl-containing ligands and the bulky disiloxane functionality, the solvation structure [Li(S)3](+) is the preferred structure according to Gibbs free energy ΔG(B) results.

10.
Chemphyschem ; 15(9): 1761-71, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24737746

RESUMO

A gel electrolyte membrane is obtained through the absorption of a carbamate-modified liquid disiloxane-containing lithium bis(trifluoromethane)sulfonimide (LiTFSI) by using macroporous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) membranes. The porous membranes are prepared by means of a phase inversion technique. The resulting gel electrolyte membrane is studied by using differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and microscope mapping through coherent anti-Stokes Raman scattering (CARS) confocal microscopy and impedance spectroscopy. The ionic conductivity of the gel electrolyte is 10(-4) S cm(-1) at 20 °C. FTIR spectroscopy reveals interactions between LiTFSI and the carbonyl moiety of the disiloxane. No interactions between LiTFSI and PVDF-HFP or between disiloxane and PVDF-HFP are detected by FTIR spectroscopy. Furthermore, the distribution of the α and ß/γ phases of PVDF-HFP and the homogeneous distribution of disiloxane/LiTFSI in the gel electrolyte membranes are examined by FTIR mapping. CARS confocal microscopy is used to image the three-dimensional interconnectivity, which reveals a reticulated structure of macrovoids in the porous PVDF-HFP framework. Owing to properties such as electrochemical and thermal stability of the disiloxane-based liquid electrolyte and the mechanical stability of the porous PVDF-HFP membrane, the gel electrolyte membranes presented herein are promising candidates for applications as electrolytes/separators in lithium-ion batteries.


Assuntos
Carbamatos/química , Eletrólitos/química , Lítio/química , Polivinil/química , Silanos/química , Fontes de Energia Elétrica , Géis/química , Porosidade
11.
Chem Commun (Camb) ; 49(12): 1190-2, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23287984

RESUMO

Novel liquid disiloxanes, containing an n-propylic spacer group between the disiloxane fragment and a cyclic or non-cyclic carbamate moiety, were synthesized and characterized as liquid electrolytes. The ionic conductivity, thermal properties, viscosity and relative permittivity of these new solvents have been investigated, taking into account steric factors.

13.
J Am Chem Soc ; 133(29): 11018-21, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21623628

RESUMO

The intermetallic compounds Li(x)Si(y) have attracted considerable interest because of their potential use as anode materials in Li ion batteries. In addition, the crystalline phases in the Li-Si phase diagram turn out to be outstanding model systems for the measurement of fast Li ion diffusion in solids with complex structures. In the present work, the Li self-diffusivity in crystalline Li(12)Si(7) was thoroughly probed by (7)Li NMR spin-lattice relaxation (SLR) measurements. Variable-temperature and -frequency NMR measurements performed in both the laboratory and rotating frames of reference revealed three distinct diffusion processes in Li(12)Si(7). The diffusion process characterized by the highest Li diffusivity seems to be confined to one dimension. It is one of the fastest motions of Li ions in a solid at low temperatures reported to date. The Li jump rates of this hopping process followed Arrhenius behavior; the jump rate was ~10(5) s(-1) at 150 K and reached 10(9) s(-1) at 425 K, indicating an activation energy as low as 0.18 eV.

14.
Rapid Commun Mass Spectrom ; 25(1): 147-54, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21157861

RESUMO

Cyclic phosphazenes with different substituents were synthesised and investigated by liquid chromatography (LC) and electrospray ionisation mass spectrometry (ESI-MS). Hexachlorocyclotriphosphazene was functionalised with aliphatic substituents as alcohols and amines, leading to product mixtures, which were subsequently analysed. In contrast to classical methods of structural analysis such as nuclear magnetic resonance (NMR) spectroscopy or X-ray crystallography, which are restricted to pure compounds, these complex mixtures can favourably be analysed by means of LC/ESI-MS. The main products could be separated from by-products and, moreover, all the components of the unknown mixture were unambiguously identified by accurate mass measurements. For all compounds with different side-chain ratios, remaining chlorine atoms or hydroxyl groups and even for spiro or ansa products, molecular structures could be suggested.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fosforanos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Peso Molecular , Fosforanos/síntese química , Fosforanos/isolamento & purificação
15.
Nanoscale ; 2(10): 2275-80, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20721398

RESUMO

We present a quantitative analysis of the steady-state electronic transport in a resistive switching device. The device is composed of a thin film of Ag(2)S (solid electrolyte) contacted by a Pt nano-contact acting as ion-blocking electrode, and a large-area Ag reference electrode. When applying a bias voltage both ionic and electronic transport occurs, and depending on the polarity it causes an accumulation of ions around the nano-contact. At small applied voltages (pre-switching) we observed this as a strongly nonlinear current-voltage curve, which is modeled using the Hebb-Wagner treatment for polarization of a mixed conductor. This model correctly describes the transport of the electrons within the polarized solid electrolyte in the steady-state up until the resistance switching, covering the entire range of non-stoichiometries, and including the supersaturation range just before the deposition of elemental silver. In this way, it is a step towards a quantitative understanding of the processes that lead to resistance switching.

16.
Phys Chem Chem Phys ; 12(25): 6844-51, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20431833

RESUMO

We have investigated a new improved lithium ion conducting salt-in-polymer electrolyte system consisting of a polysiloxane backbone with oligoether side chains and added LiCF(3)SO(3) (LiTf), which has a conductivity at 30 degrees C of up to 1.3 x 10(-4) S cm(-1) and up to 6.9 x 10(-5) S cm(-1) after cross-linking, which is employed to enhance mechanical stability. The mechanisms governing local dynamics and mass transport have been studied on the basis of temperature dependent spin-lattice relaxation time and pulsed field gradient diffusion measurements for (7)Li, (19)F and (1)H, respectively. The correlation times characterizing the local ion dynamics reflect the complexation of the cations by the polyether side chains of the polymer and show the anion as the more mobile species. In contrast, (7)Li and (19)F diffusion coefficients and their activation energies are rather similar, suggesting the formation of ion pairs with similar activation barriers for cation and/or anion long-range transport. In general, the activation energies describing local reorientation are significantly smaller than those characterizing long range diffusion, suggesting that the long-range transport of both cations and anions is a much more complex process than a simple succession of free ion jumps, and involves (1) the coupling of conformational side-chain reorientations to the cation movement, and (2) the correlated diffusion of cations and anions within dimers or clusters. An important practical conclusion from our results is that the relatively high ionic conductivity in polysiloxane-based polymer electrolytes could even be increased if salt dissociation could be enhanced further.

17.
Nat Mater ; 8(2): 101-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151704

RESUMO

Semiconductors are key materials in modern electronics and are widely used to build, for instance, transistors in integrated circuits as well as thermoelectric materials for energy conversion, and there is a tremendous interest in the development and improvement of novel materials and technologies to increase the performance of electronic devices and thermoelectrics. Tetramorphic Ag(10)Te(4)Br(3) is a semiconductor capable of switching its electrical properties by a simple change of temperature. The combination of high silver mobility, a small non-stoichiometry range and an internal redox process in the tellurium substructure causes a thermopower drop of 1,400 microV K(-1), in addition to a thermal diffusivity in the range of organic polymers. The capability to reversibly switch semiconducting properties from ionic to electronic conduction in one single compound simply by virtue of temperature enables novel electronic devices such as semiconductor switches.

18.
J Phys Chem B ; 111(29): 8532-9, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17474772

RESUMO

Polyelectrolyte multilayers are built up from ionically modified polyphosphazenes by layer-by-layer assembly of a cationic (poly[bis(3-amino-N,N,N-trimethyl-1-propanaminium iodide)phosphazene] (PAZ+) and an anionic poly[bis(lithium carboxylatophenoxy)phosphazene] (PAZ-). In comparison, multilayers of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) are investigated. Frequency-dependent conductivity spectra are taken in sandwich geometry at controlled relative humidity. Conductivity spectra of ion-conducting materials generally display a dc plateau at low frequencies and a dispersive regime at higher frequencies. In the present case, the dispersive regime shows a frequency dependence, which is deviating from the typical behavior found in most ion-conducting materials. Dc conductivity values, which can be attributed to long-range ionic transport, are on the order of sigmadc = 10-10-10-7 S.cm-1 and strongly depend on relative humidity. For PAZ+/PAZ- multilayers sigmadc is consistently larger by one decade as compared to PSS/PAH layers, while the humidity dependence is similar, pointing at general mechanisms. A general law of a linear dependence of log(sigmadc) on relative humidity is found over a wide range of humidity and holds for both multilayer systems. This very strong dependence was attributed to variations of the ion mobility with water content, since the water content itself is not drastically dependent on humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...