Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(21): 4189-4199, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171778

RESUMO

Identifying the genetic architecture of complex phenotypes is a central goal of modern biology, particularly for disease-related traits. Genome-wide association methods are a classical approach for identifying the genomic basis of variation in disease phenotypes, but such analyses are particularly challenging in natural populations due to sample size difficulties. Extensive mark-recapture data, strong linkage disequilibrium and a lethal transmissible cancer make the Tasmanian devil (Sarcophilus harrisii) an ideal model for such an association study. We used a RAD-capture approach to genotype 624 devils at ~16,000 loci and then used association analyses to assess the heritability of three cancer-related phenotypes: infection case-control (where cases were infected devils and controls were devils that were never infected), age of first infection and survival following infection. The SNP array explained much of the phenotypic variance for female survival (>80%) and female case-control (>61%). We found that a few large-effect SNPs explained much of the variance for female survival (~5 SNPs explained >61% of the total variance), whereas more SNPs (~56) of smaller effect explained less of the variance for female case-control (~23% of the total variance). By contrast, these same SNPs did not account for a significant proportion of phenotypic variance in males, suggesting that the genetic bases of these traits and/or selection differ across sexes. Loci involved with cell adhesion and cell-cycle regulation underlay trait variation, suggesting that the devil immune system is rapidly evolving to recognize and potentially suppress cancer growth through these pathways. Overall, our study provided necessary data for genomics-based conservation and management in Tasmanian devils.


Assuntos
Resistência à Doença/genética , Marsupiais/genética , Neoplasias/veterinária , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Estudos de Associação Genética/veterinária , Genômica , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Taxa de Sobrevida , Tasmânia
2.
Conserv Genet ; 18(4): 977-982, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28966567

RESUMO

Tasmanian devils face a combination of threats to persistence, including Devil Facial Tumor Disease (DFTD), an epidemic transmissible cancer. We used RAD sequencing to investigate genome-wide patterns of genetic diversity and geographic population structure. Consistent with previous results, we found very low genetic diversity in the species as a whole, and we detected two broad genetic clusters occupying the northwestern portion of the range, and the central and eastern portions. However, these two groups overlap across a broad geographic area, and differentiation between them is modest (FST = 0.1081). Our results refine the geographic extent of the zone of mixed ancestry and substructure within it, potentially informing management of genetic variation that existed in pre-diseased populations of the species. DFTD has spread across both genetic clusters, but recent evidence points to a genomic response to selection imposed by DFTD. Any allelic variation for resistance to DFTD may be able to spread across the devil population under selection by DFTD, and/or be present as standing variation in both genetic regions.

3.
Nat Commun ; 7: 12684, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27575253

RESUMO

Although cancer rarely acts as an infectious disease, a recently emerged transmissible cancer in Tasmanian devils (Sarcophilus harrisii) is virtually 100% fatal. Devil facial tumour disease (DFTD) has swept across nearly the entire species' range, resulting in localized declines exceeding 90% and an overall species decline of more than 80% in less than 20 years. Despite epidemiological models that predict extinction, populations in long-diseased sites persist. Here we report rare genomic evidence of a rapid, parallel evolutionary response to strong selection imposed by a wildlife disease. We identify two genomic regions that contain genes related to immune function or cancer risk in humans that exhibit concordant signatures of selection across three populations. DFTD spreads between hosts by suppressing and evading the immune system, and our results suggest that hosts are evolving immune-modulated resistance that could aid in species persistence in the face of this devastating disease.


Assuntos
Evolução Biológica , Doenças Transmissíveis Emergentes/veterinária , Resistência à Doença/genética , Neoplasias Faciais/veterinária , Marsupiais/genética , Animais , Doenças Transmissíveis Emergentes/genética , Doenças Transmissíveis Emergentes/transmissão , Resistência à Doença/imunologia , Espécies em Perigo de Extinção , Extinção Biológica , Neoplasias Faciais/genética , Neoplasias Faciais/imunologia , Genômica/métodos , Técnicas de Genotipagem/métodos , Marsupiais/imunologia , Dinâmica Populacional , Tasmânia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...