Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33545564

RESUMO

More than 370 biotherapeutics drug products have been approved by regulatory agencies on the US and EU markets and this industry continues to expand. Process change and optimization is necessary to develop new effective biologics in a cost effective and productive way. Consequently, improvement of analytical techniques is required for better product characterization according to Quality by Design (QbD) approach recommended by regulatory agencies. Recently, multi-attribute method (MAM) has emerged to meet such demands using mass spectrometry coupled to liquid chromatography (LC-MS). However, traditional sample preparation or data processing would not be suitable to guide process development, because one of the common challenges during development of analytical platforms is instrument or method variability which can cause deviation in results. Here, we show a new automated analytical platform for MAM implemented on 3 different sites: the components of MAM platform include automated sample preparation, LC-MS based MAM, and data treatment automation. To our knowledge, this is the first study to show global harmonization on automated MAM platforms and the inter-sites comparability including the automated sample preparation and LC-MS instrument. Also, we demonstrate the applicability of MAM to support cell line development, cell culture process development and downstream process development. We expect that this MAM platform will effectively guide process development across multiple projects.


Assuntos
Anticorpos Monoclonais , Automação/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Interações Hidrofóbicas e Hidrofílicas , Projetos de Pesquisa
2.
Elife ; 52016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26785146

RESUMO

The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Multimerização Proteica/efeitos da radiação , Temperatura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Choque Térmico , Humanos , Cinética , Espectrometria de Massas , Conformação Proteica/efeitos da radiação , Dobramento de Proteína/efeitos da radiação
3.
Expert Rev Proteomics ; 12(2): 115-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720436

RESUMO

Proteins are an important class of biologics. Their higher-order structures and therefore their functions are fundamentally determined by the correct formation of disulfide bonds (DSBs), making DSB analysis a central part of their development and production. Mass spectrometry-based bottom-up approaches are most widely used and are further classified according to different methods applied for DSB cleavage. Despite the importance of DSB analysis and the wide range of available methodologies, it is often a challenging and time consuming task. However, due to the current increase in biosimilar development in which animal and clinical trials can be reduced by extensive analytical comparability studies, increased efforts are being made to simplify DSB analysis. As an example of these developments, a matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF workflow for the automated profiling and identification of DSBs is presented. Furthermore, mass spectrometry based methodologies, which do not identify DSBs directly but measure their influence on the higher-order structure, are also considered.


Assuntos
Dissulfetos/química , Espectrometria de Massas/métodos , Proteínas/química , Humanos , Proteínas/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...