Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(1): 238-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164905

RESUMO

The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling.

2.
ACS Photonics ; 10(5): 1504-1511, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37215325

RESUMO

Semiconductor quantum dot molecules are considered promising candidates for quantum technological applications due to their wide tunability of optical properties and coverage of different energy scales associated with charge and spin physics. While previous works have studied the tunnel-coupling of the different excitonic charge complexes shared by the two quantum dots by conventional optical spectroscopy, we here report on the first demonstration of a coherently controlled interdot tunnel-coupling focusing on the quantum coherence of the optically active trion transitions. We employ ultrafast four-wave mixing spectroscopy to resonantly generate a quantum coherence in one trion complex, transfer it to and probe it in another trion configuration. With the help of theoretical modeling on different levels of complexity, we give an instructive explanation of the underlying coupling mechanism and dynamical processes.

3.
Opt Express ; 31(4): 7012-7022, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823946

RESUMO

Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale optical mapping of manifold material properties. It is based on interferometric recording of the light scattered at a scanning probe tip. For dielectric samples such as biological materials or polymers, the near-field amplitude and phase signals of the scattered field reveal the local reflectivity and absorption, respectively. Importantly, absorption in s-SNOM imaging corresponds to a positive phase contrast relative to a non-absorbing reference sample. Here, we describe that in certain conditions (weakly or non- absorbing material placed on a highly reflective substrate), a slight negative phase contrast may be observed, which can hinder the recognition of materials exhibiting a weak infrared absorption. We first document this effect and explore its origin using representative test samples. We then demonstrate straightforward simple correction methods that remove the negative phase contrast and that allow for the identification of weak absorption contrasts.

4.
Adv Sci (Weinh) ; 9(1): e2103813, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716672

RESUMO

Monolayers of transition metal dichalcogenides display a strong excitonic optical response. Additionally encapsulating the monolayer with hexagonal boron nitride allows to reach the limit of a purely homogeneously broadened exciton system. On such a MoSe2 -based system, ultrafast six-wave mixing spectroscopy is performed and a novel destructive photon echo effect is found. This process manifests as a characteristic depression of the nonlinear signal dynamics when scanning the delay between the applied laser pulses. By theoretically describing the process within a local field model, an excellent agreement with the experiment is reached. An effective Bloch vector representation is developed and thereby it is demonstrated that the destructive photon echo stems from a destructive interference of successive repetitions of the heterodyning experiment.

5.
Entropy (Basel) ; 22(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-33286060

RESUMO

In quantum physics, two prototypical model systems stand out due to their wide range of applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often an ideal model for confined charge or spin systems and the latter for lattice vibrations, i.e., phonons. Here, we couple these two systems, which leads to numerous fascinating physical phenomena. Practically, we consider different optical excitations and decay scenarios of a TLS, focusing on the generated dynamics of a single phonon mode that couples to the TLS. Special emphasis is placed on the entropy of the different parts of the system, predominantly the phonons. While, without any decay, the entire system is always in a pure state, resulting in a vanishing entropy, the complex interplay between the single parts results in non-vanishing respective entanglement entropies and non-trivial dynamics of them. Taking a decay of the TLS into account leads to a non-vanishing entropy of the full system and additional aspects in its dynamics. We demonstrate that all aspects of the entropy's behavior can be traced back to the purity of the states and are illustrated by phonon Wigner functions in phase space.

6.
Nanoscale ; 12(40): 20786-20796, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33034315

RESUMO

Atomically thin layers of transition metal dichalcogenides (TMDC) have exceptional optical properties, exhibiting a characteristic absorption and emission at excitonic resonances. Due to their extreme flexibility, strain can be used to alter the fundamental exciton energies and line widths of TMDCs. Here, we report on the Stokes shift, i.e. the energetic difference of light absorption and emission, of the A exciton in TMDC mono- and bilayers. We demonstrate that mechanical strain can be used to tune the Stokes shift. We perform optical transmission and photoluminescence (PL) experiments on mono- and bilayers and apply uniaxial tensile strain of up to 1.2% in MoSe2 and WS2 bilayers. An A exciton red shift of -38 meV/% and -70 meV/% is found in transmission in MoSe2 and WS2, while smaller values of -27 meV/% and -62 meV/% are measured in PL, respectively. Therefore, a reduction of the Stokes shift is observed under increasing tensile strain. At the same time, the A exciton PL line widths narrow significantly with -14 meV/% (MoSe2) and -21 meV/% (WS2), demonstrating a drastic change in the exciton-phonon interaction. By comparison with ab initio calculations, we can trace back the observed shifts of the excitons to changes in the electronic band structure of the materials. Variations of the relative energetic positions of the different excitons lead to a decrease of the exciton-phonon coupling. Furthermore, we identify the indirect exciton emission in bilayer WS2 as the ΓK transition by comparing the experimental and theoretical gauge factors.

7.
Opt Lett ; 45(4): 919-922, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058506

RESUMO

When an electron-hole pair is optically excited in a semiconductor quantum dot, the host crystal lattice adapts to the presence of the generated charge distribution. Therefore, the coupled exciton-phonon system has to establish a new equilibrium, which is reached in the form of a quasiparticle called a polaron. Especially, when the exciton is abruptly generated on a timescale faster than the typical lattice dynamics, the lattice cannot follow adiabatically. Consequently, rich dynamics on the picosecond timescale of the coupled system is expected. In this study, we combine simulations and measurements of the ultrafast, coherent, nonlinear optical response, obtained by four-wave mixing (FWM) spectroscopy, to resolve the formation of this polaron. By detecting and investigating the phonon sidebands in the FWM spectra for varying pulse delays and different temperatures, we have access to the influence of phonon emission and absorption processes, which finally result in the emission of an acoustic wave packet.

8.
Nano Lett ; 18(3): 1751-1757, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29389133

RESUMO

Semiconducting transition metal dichalcogenide (TMDC) monolayers have exceptional physical properties. They show bright photoluminescence due to their unique band structure and absorb more than 10% of the light at their excitonic resonances despite their atomic thickness. At room temperature, the width of the exciton transitions is governed by the exciton-phonon interaction leading to strongly asymmetric line shapes. TMDC monolayers are also extremely flexible, sustaining mechanical strain of about 10% without breaking. The excitonic properties strongly depend on strain. For example, exciton energies of TMDC monolayers significantly redshift under uniaxial tensile strain. Here, we demonstrate that the width and the asymmetric line shape of excitonic resonances in TMDC monolayers can be controlled with applied strain. We measure photoluminescence and absorption spectra of the A exciton in monolayer MoSe2, WSe2, WS2, and MoS2 under uniaxial tensile strain. We find that the A exciton substantially narrows and becomes more symmetric for the selenium-based monolayer materials, while no change is observed for atomically thin WS2. For MoS2 monolayers, the line width increases. These effects are due to a modified exciton-phonon coupling at increasing strain levels because of changes in the electronic band structure of the respective monolayer materials. This interpretation based on steady-state experiments is corroborated by time-resolved photoluminescence measurements. Our results demonstrate that moderate strain values on the order of only 1% are already sufficient to globally tune the exciton-phonon interaction in TMDC monolayers and hold the promise for controlling the coupling on the nanoscale.

9.
Adv Mater ; 28(33): 7101-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27305430

RESUMO

Single-photon emitters in monolayer WSe2 are created at the nanoscale gap between two single-crystalline gold nanorods. The atomically thin semiconductor conforms to the metal nanostructure and is bent at the position of the gap. The induced strain leads to the formation of a localized potential well inside the gap. Single-photon emitters are localized there with a precision better than 140 nm.

10.
ACS Photonics ; 3(12): 2461-2466, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28713845

RESUMO

Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs), achieving their efficient coupling to the external light field. This enables performing four-wave mixing microspectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the line shape of the phonon-assisted PL using realistic quantum dot geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...