Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 109(7): 973-981, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33241668

RESUMO

Bacterial infections still present a significant concern in orthopedic and dental implant failure. Previous investigations have focused on modifying the surface texture, roughness, or coating implants with antibiotics to provide enhanced anti-bacterial properties. However, they have demonstrated limited success. In this study, we attempted to engineer the titanium (Ti) alloy surface biomimetically at the nano level using alkaline hydrothermal treatment (AHT) inspired by cicada's wing structure. Two modified surfaces of Ti plates were developed using 4 and 8-hr AHT at 230°C. We found that the control plates showed a relatively smooth surface, with little artifacts on the surface. In contrast, 4-hr AHT and 8-hr AHT plates showed nano-spikes of heights around 250-350 and 100-1,250 nm, respectively, that were distributed randomly all over the surface. We found a statistically significant (p < 0.05) number of non-viable cells for both S. aureus and P. aeruginosa bacterial strains when incubated for 1 hr in a dynamic environment when compared with the control group. The 8-hr AHT groups killed 38.97% more S. aureus in static culture and 11.27% in a dynamic environment than the 4-hr AHT. Overall, the findings indicate that the nanostructures generated on titanium by the AHT showed significant bactericidal properties. We, therefore, recommend conducting alkaline hydrothermal treatment on the surfaces for future orthopedic and dental metallic implants.


Assuntos
Antibacterianos/química , Implantes Dentários/microbiologia , Nanoestruturas/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Titânio/química , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...