Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 378(11): 1018-1028, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29539279

RESUMO

BACKGROUND: In juvenile myoclonic epilepsy, data are limited on the genetic basis of networks promoting convulsions with diffuse polyspikes on electroencephalography (EEG) and the subtle microscopic brain dysplasia called microdysgenesis. METHODS: Using Sanger sequencing, we sequenced the exomes of six members of a large family affected with juvenile myoclonic epilepsy and confirmed cosegregation in all 37 family members. We screened an additional 310 patients with this disorder for variants on DNA melting-curve analysis and targeted real-time DNA sequencing of the gene encoding intestinal-cell kinase ( ICK). We calculated Bayesian logarithm of the odds (LOD) scores for cosegregating variants, odds ratios in case-control associations, and allele frequencies in the Genome Aggregation Database. We performed functional tests of the effects of variants on mitosis, apoptosis, and radial neuroblast migration in vitro and conducted video-EEG studies in mice lacking a copy of Ick. RESULTS: A variant, K305T (c.914A→C), cosegregated with epilepsy or polyspikes on EEG in 12 members of the family affected with juvenile myoclonic epilepsy. We identified 21 pathogenic ICK variants in 22 of 310 additional patients (7%). Four strongly linked variants (K220E, K305T, A615T, and R632X) impaired mitosis, cell-cycle exit, and radial neuroblast migration while promoting apoptosis. Tonic-clonic convulsions and polyspikes on EEG resembling seizures in human juvenile myoclonic epilepsy occurred more often in knockout heterozygous mice than in wild-type mice (P=0.02) during light sleep with isoflurane anesthesia. CONCLUSIONS: Our data provide evidence that heterozygous variants in ICK caused juvenile myoclonic epilepsy in 7% of the patients included in our analysis. Variant ICK affects cell processes that help explain microdysgenesis and polyspike networks observed on EEG in juvenile myoclonic epilepsy. (Funded by the National Institutes of Health and others.).


Assuntos
Mutação , Epilepsia Mioclônica Juvenil/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Animais , Teorema de Bayes , Estudos de Casos e Controles , Criança , Pré-Escolar , Cromossomos Humanos Par 6 , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Camundongos Knockout , Epilepsia Mioclônica Juvenil/fisiopatologia , Análise de Sequência de DNA , Adulto Jovem
2.
Genet Med ; 19(2): 144-156, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27467453

RESUMO

PURPOSE: EFHC1 variants are the most common mutations in inherited myoclonic and grand mal clonic-tonic-clonic (CTC) convulsions of juvenile myoclonic epilepsy (JME). We reanalyzed 54 EFHC1 variants associated with epilepsy from 17 cohorts based on National Human Genome Research Institute (NHGRI) and American College of Medical Genetics and Genomics (ACMG) guidelines for interpretation of sequence variants. METHODS: We calculated Bayesian LOD scores for variants in coinheritance, unconditional exact tests and odds ratios (OR) in case-control associations, allele frequencies in genome databases, and predictions for conservation/pathogenicity. We reviewed whether variants damage EFHC1 functions, whether efhc1-/- KO mice recapitulate CTC convulsions and "microdysgenesis" neuropathology, and whether supernumerary synaptic and dendritic phenotypes can be rescued in the fly model when EFHC1 is overexpressed. We rated strengths of evidence and applied ACMG combinatorial criteria for classifying variants. RESULTS: Nine variants were classified as "pathogenic," 14 as "likely pathogenic," 9 as "benign," and 2 as "likely benign." Twenty variants of unknown significance had an insufficient number of ancestry-matched controls, but ORs exceeded 5 when compared with racial/ethnic-matched Exome Aggregation Consortium (ExAC) controls. CONCLUSIONS: NHGRI gene-level evidence and variant-level evidence establish EFHC1 as the first non-ion channel microtubule-associated protein whose mutations disturb R-type VDCC and TRPM2 calcium currents in overgrown synapses and dendrites within abnormally migrated dislocated neurons, thus explaining CTC convulsions and "microdysgenesis" neuropathology of JME.Genet Med 19 2, 144-156.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Epilepsia Mioclônica Juvenil/genética , Convulsões/genética , Animais , Dendritos/patologia , Exoma , Frequência do Gene , Humanos , Camundongos , Camundongos Knockout , Mutação , Epilepsia Mioclônica Juvenil/fisiopatologia , National Human Genome Research Institute (U.S.) , Neurônios/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Convulsões/fisiopatologia , Sinapses/patologia , Estados Unidos
3.
Mol Genet Genomic Med ; 4(2): 197-210, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066514

RESUMO

Juvenile myoclonic epilepsy (JME), the most common genetic epilepsy, remains enigmatic because it is considered one disease instead of several diseases. We ascertained three large multigenerational/multiplex JME pedigrees from Honduras with differing JME subsyndromes, including Childhood Absence Epilepsy evolving to JME (CAE/JME; pedigree 1), JME with adolescent onset pyknoleptic absence (JME/pA; pedigree 2), and classic JME (cJME; pedigree 3). All phenotypes were validated, including symptomatic persons with various epilepsies, asymptomatic persons with EEG 3.5-6.0 Hz polyspike waves, and asymptomatic persons with normal EEGs. Two-point parametric linkage analyses were performed with 5185 single-nucleotide polymorphisms on individual pedigrees and pooled pedigrees using four diagnostic models based on epilepsy/EEG diagnoses. Haplotype analyses of the entire genome were also performed for each individual. In pedigree 1, haplotyping identified a 34 cM region in 2q21.2-q31.1 cosegregating with all affected members, an area close to 2q14.3 identified by linkage (Z max = 1.77; pedigree 1). In pedigree 2, linkage and haplotyping identified a 44 cM cosegregating region in 13q13.3-q31.2 (Z max = 3.50 at 13q31.1; pooled pedigrees). In pedigree 3, haplotyping identified a 6 cM cosegregating region in 17q12. Possible cosegregation was also identified in 13q14.2 and 1q32 in pedigree 3, although this could not be definitively confirmed due to the presence of uninformative markers in key individuals. Differing chromosome regions identified in specific JME subsyndromes may contain separate JME disease-causing genes, favoring the concept of JME as several distinct diseases. Whole-exome sequencing will likely identify a CAE/JME gene in 2q21.2-2q31.1, a JME/pA gene in 13q13.3-q31.2, and a cJME gene in 17q12.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...