Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 361(6401): 482-485, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29903886

RESUMO

Tidal disruption events (TDEs) are transient flares produced when a star is ripped apart by the gravitational field of a supermassive black hole (SMBH). We have observed a transient source in the western nucleus of the merging galaxy pair Arp 299 that radiated >1.5 × 1052 erg at infrared and radio wavelengths but was not luminous at optical or x-ray wavelengths. We interpret this as a TDE with much of its emission reradiated at infrared wavelengths by dust. Efficient reprocessing by dense gas and dust may explain the difference between theoretical predictions and observed luminosities of TDEs. The radio observations resolve an expanding and decelerating jet, probing the jet formation and evolution around a SMBH.

2.
Dalton Trans ; 44(23): 10875-81, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25923829

RESUMO

Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) with the cubic perovskite structure is known to be metastable at low temperature under an oxidizing atmosphere. Here, the thermal and chemical expansion of BSCF were studied by in situ high temperature powder X-ray diffraction and thermo-gravimetrical analysis (TGA) in partial pressure of oxygen ranging from an inert atmosphere (∼10(-4) bar) to 10 bar O(2). The BSCF powder, heat treated at 1000 °C and quenched to ambient temperature prior to the analysis, was shown to oxidize under an oxidizing atmosphere before thermal reduction took place. With decreasing partial pressure of oxygen the initial oxidation was suppressed and only reduction of Co/Fe and loss of oxygen were observed under an inert atmosphere. The thermal expansion of BSCF under different atmospheres was determined from the thermal evolution of the cubic unit cell parameter, demonstrating that the thermal expansion of BSCF depends on the atmosphere. Chemical expansion of BSCF was also estimated based on the diffraction data and thermo-gravimetrical analysis. A hexagonal perovskite phase, coexisting with the cubic BSCF polymorph, was observed to be formed above 600 °C during heating. The phase separation leading to the formation of the hexagonal polymorph was driven by oxidation, and the unit cell of the cubic BSCF was shown to decrease with increasing amounts of the hexagonal phase. The hexagonal phase disappeared upon further heating, accompanied with an expansion of the unit cell of the cubic BSCF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...