Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806804

RESUMO

INTRODUCTION: Identifying and monitoring adverse events following vaccination contributed to the safety and effectiveness of COVID-19 mass vaccination campaigns. In March 2021, international reports emerged of an adverse event following vaccination with adenovirus vector COVID-19 vaccines (ChAdOx1-S [recombinant] and Ad26.COV2.S) of thrombosis with low platelet counts, referred to as thrombosis with thrombocytopenia syndrome (TTS). We described TTS reports in Canada following adenovirus vector COVID-19 vaccines and investigated whether the observed number of events were higher than expected. METHODS: Reports of TTS following receipt of ChAdOx1-S [recombinant] or Ad26.COV2.S meeting the Canadian case definition for TTS and diagnostic certainty levels 1-3 of the Brighton Collaboration case definition, submitted to the Canadian Adverse Events Following Immunization Surveillance System and Canada Vigilance Database between February 26, 2021 and October 31, 2022 were included. Demographics and characteristics of the TTS reports are described along with an analysis comparing the observed number of reports to the expected number. RESULTS: As of October 31, 2022, 56 reports of TTS following administration of ChAdOx1-S [recombinant] and no reports following Ad26.COV2.S vaccines were reported in Canada, of which 37 had functionally positive anti-PF4 antibodies. The median age was 56 years; males accounted for 54 % of reports. Five deaths were reported. The observed number of reports exceeded the expected for all ages and sexes combined, as well as for males aged 30-49 and 60-69 years, and females aged 40-59 years. CONCLUSION: Based on international surveillance data, Canada evaluated a statistical signal of TTS following adenovirus vector vaccines. The investigation of this signal demonstrated how post-market vaccine safety surveillance systems were successful in investigating rare adverse events during the rollout of COVID-19 vaccines in Canada. As adenovirus vector vaccines continue to be administered, characterization of the association between the vaccine and TTS informs immunization programs and policies.

2.
Can Commun Dis Rep ; 44(1): 32-37, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31015803

RESUMO

BACKGROUND: In Canada, the annual incidence rates of West Nile virus (WNV) illness have fluctuated over the last 15 years. Ontario is one of the provinces in Canada most affected by WNV and, as a result, has implemented robust mosquito and human surveillance programs. OBJECTIVE: To summarize and discuss the epidemiology of WNV illness in Ontario, Canada in 2017, with comparisons to previous years. METHODS: Case data were obtained from the provincial integrated Public Health Information System. Provincial and public health unit (PHU)-specific incidence rates by year were calculated using population data extracted from intelliHEALTH Ontario. RESULTS: In 2017, the incidence of WNV illness in Ontario was 1.1 cases per 100,000 population, with 158 confirmed and probable cases reported by 27 of the province's 36 PHUs. This is the highest rate since 2013, but less than the rate in 2012 (2.0 cases per 100,000 population). Incidence rates in 2017 were highest in Windsor-Essex County and in PHUs in eastern Ontario. While the seasonality is consistent with previous years, the number of cases reported between July and September 2017 was above expected. Most cases were in older age groups (median: 58 years old) and males (59.5% of provincial total); cases with severe outcomes (neurological complications, hospitalizations, deaths) were also disproportionately in older males. CONCLUSION: WNV illness continues to be an ongoing burden in Ontario. The increase in the number of cases reported in 2017, and the increased number of PHUs reporting cases, suggests changing and expanding risk levels in Ontario. Continued mosquito and human surveillance, increased awareness of preventive measures, and early recognition and treatment are needed to mitigate the impact of WNV infections.

3.
Can Commun Dis Rep ; 44(10): 231-236, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31524884

RESUMO

BACKGROUND: Lyme disease is an infection caused by the spirochete Borrelia burgdorferi and, in most of North America, is transmitted by the blacklegged tick Ixodes scapularis. Climate change has contributed to the expansion of the geographic range of blacklegged ticks in Ontario, increasing the risk of Lyme disease for Ontarians. OBJECTIVE: To identify the number of cases and incidence rates, as well as the geographic, seasonal and demographic distribution of Lyme disease cases reported in Ontario in 2017, with comparisons to historical trends. METHODS: Data for confirmed and probable Lyme disease cases with episode dates from January 1, 2012, through December 31, 2017, were extracted from the integrated Public Health Information System (iPHIS). Data included public health unit (PHU) of residence, episode date, age and sex. Population data from Statistics Canada were used to calculate provincial and PHU-specific incidence rates per 100,000 population. The number of cases reported in 2017 by PHU of residence, month of occurrence, age and sex was compared to the 5-year averages for the period 2012-2016. RESULTS: There were 959 probable and confirmed cases of Lyme disease reported in Ontario in 2017. This was three times higher than the 5-year (2012-2016) average of 313. The provincial incidence rate for 2017 was 6.7 cases per 100,000 population, although this varied markedly by PHU. The highest incidence rates were found in Leeds-Grenville and Lanark District (128.8 cases per 100,000), Kingston-Frontenac, Lennox and Addington (87.2 cases per 100,000), Hastings and Prince Edward Counties (28.6 cases per 100,000), Ottawa (18.1 cases per 100,000) and Eastern Ontario (13.5 cases per 100,000). Cases occurred mostly from June through September, were most common among males, and those aged 5-14 and 50-69 years. CONCLUSION: In 2017, Lyme disease incidence showed a marked increase in Ontario, especially in the eastern part of the province. If current weather and climate trends continue, blacklegged ticks carrying tick-borne pathogens, such as those causing Lyme disease, will continue to spread into suitable habitat. Monitoring the extent of this geographic spread will inform future clinical and public health actions to detect and mitigate the impact of Lyme disease in Ontario.

4.
Can Commun Dis Rep ; 42(4): 83-88, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29770009

RESUMO

BACKGROUND: Invasive pneumococcal disease (IPD) causes significant morbidity in Canada, yet even with routine surveillance, it is difficult to interpret current IPD trends in serotype distribution and antimicrobial resistance. The enhanced Invasive Pneumococcal Disease Surveillance System (eIPDSS) pilot project was designed to facilitate a better understanding of IPD trends at the national level by linking epidemiologic and laboratory (epi-lab) data. OBJECTIVES: To evaluate the eIPDSS by assessing five attributes (usefulness, data quality, simplicity, acceptability and timeliness) and to develop recommendations for future national IPD surveillance. METHODS: An evaluation was developed that assessed the five key attributes through a qualitative survey sent to eight eIPDSS users as well as a quantitative analysis of the eIPDSS database. Recommendations were based on the results of both the survey and the analysis. RESULTS: The response rate to the survey was 100%. The majority of the survey respondents found the eIPDSS to be useful (75%), simple (100%) and acceptable (86%). Analysis of the eIPDSS database revealed that the majority of IPD cases (61%) were assessed as timely. Data quality and data management mechanisms were identified as issues by both survey respondents and the analysis of the database. Consultation with public health, regular audits and upgrades to the platform are recommended to address data quality and management issues. CONCLUSION: The epi-lab linked data of the eIPDSS enables the detection and analysis of IPD serotype distribution and antimicrobial resistance trends. This web-based system facilitates data collection and is simple, acceptable and timely. With improvements that address data quality and management issues, it is feasible to develop a national surveillance system that links epi-lab data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...