Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0004824, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814083

RESUMO

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.

2.
Life (Basel) ; 13(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37895435

RESUMO

Microscopic symbionts represent crucial links in biological communities. However, they present technical challenges in high-throughput sequencing (HTS) studies due to their small size and minimal high-quality DNA yields, hindering our understanding of host-symbiont coevolution at microevolutionary and macroevolutionary scales. One approach to overcome those barriers is to pool multiple individuals from the same infrapopulation (i.e., individual host) and sequence them together (Pool-Seq), but individual-level information is then compromised. To simultaneously address both issues (i.e., minimal DNA yields and loss of individual-level information), we implemented a strategic Pool-Seq approach to assess variation in sequencing performance and categorize genetic diversity (single nucleotide polymorphisms (SNPs)) at both the individual-level and infrapopulation-level for microscopic feather mites. To do so, we collected feathers harboring mites (Proctophyllodidae: Amerodectes protonotaria) from four individual Prothonotary Warblers (Parulidae: Protonotaria citrea). From each of the four hosts (i.e., four mite infrapopulations), we conducted whole-genome sequencing on three extraction pools consisting of different numbers of mites (1 mite, 5 mites, and 20 mites). We found that samples containing pools of multiple mites had more sequencing reads map to the feather mite reference genome than did the samples containing only a single mite. Mite infrapopulations were primarily genetically structured by their associated individual hosts (not pool size) and the majority of SNPs were shared by all pools within an infrapopulation. Together, these results suggest that the patterns observed are driven by evolutionary processes occurring at the infrapopulation level and are not technical signals due to pool size. In total, despite the challenges presented by microscopic symbionts in HTS studies, this work highlights the value of both individual-level and infrapopulation-level sequencing toward our understanding of host-symbiont coevolution at multiple evolutionary scales.

3.
Mol Ecol ; 32(19): 5260-5275, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37635403

RESUMO

Researchers often examine symbiont host specificity as a species-level pattern, but it can also be key to understanding processes occurring at the population level, which are not as well understood. The specialist-generalist variation hypothesis (SGVH) attempts to explain how host specificity influences population-level processes, stating that single-host symbionts (specialists) exhibit stronger population genetic structure than multi-host symbionts (generalists) because of fewer opportunities for dispersal and more restricted gene flow between populations. However, this hypothesis has not been tested in systems with highly mobile hosts, in which population connectivity may vary temporally and spatially. To address this gap, we tested the SGVH on proctophyllodid feather mites found on migratory warblers (family Parulidae) with contrasting host specificities, Amerodectes protonotaria (a host specialist of Protonotaria citrea) and A. ischyros (a host generalist of 17 parulid species). We used a pooled-sequencing approach and a novel workflow to analyse genetic variants obtained from whole genome data. Both mite species exhibited fairly weak population structure overall, and contrary to predictions of the SGVH, the generalist was more strongly structured than the specialist. These results may suggest that specialists disperse more freely among conspecifics, whereas generalists sort according to geography. Furthermore, our results may reflect an unexpected period for mite transmission - during the nonbreeding season of migratory hosts - as mite population structure more closely reflects the distributions of hosts during the nonbreeding season. Our findings alter our current understanding of feather mite biology and highlight the potential for studies to explore factors driving symbiont diversification at multiple evolutionary scales.


Assuntos
Ácaros , Passeriformes , Animais , Ácaros/genética , Passeriformes/genética , Evolução Biológica , Especificidade de Hospedeiro , Geografia , Simbiose/genética
4.
PLoS One ; 18(7): e0287590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418376

RESUMO

Phytophthora sojae is a soil-borne oomycete and the causal agent of Phytophthora root and stem rot (PRR) in soybean (Glycine max [L.] Merrill). Yield losses attributed to P. sojae are devastating in disease-conducive environments, with global estimates surpassing 1.1 million tonnes annually. Historically, management of PRR has entailed host genetic resistance (both vertical and horizontal) complemented by disease-suppressive cultural practices (e.g., oomicide application). However, the vast expansion of complex and/or diverse P. sojae pathotypes necessitates developing novel technologies to attenuate PRR in field environments. Therefore, the objective of the present study was to couple high-throughput sequencing data and deep learning to elucidate molecular features in soybean following infection by P. sojae. In doing so, we generated transcriptomes to identify differentially expressed genes (DEGs) during compatible and incompatible interactions with P. sojae and a mock inoculation. The expression data were then used to select two defense-related transcription factors (TFs) belonging to WRKY and RAV families. DNA Affinity Purification and sequencing (DAP-seq) data were obtained for each TF, providing putative DNA binding sites in the soybean genome. These bound sites were used to train Deep Neural Networks with convolutional and recurrent layers to predict new target sites of WRKY and RAV family members in the DEG set. Moreover, we leveraged publicly available Arabidopsis (Arabidopsis thaliana) DAP-seq data for five TF families enriched in our transcriptome analysis to train similar models. These Arabidopsis data-based models were used for cross-species TF binding site prediction on soybean. Finally, we created a gene regulatory network depicting TF-target gene interactions that orchestrate an immune response against P. sojae. Information herein provides novel insight into molecular plant-pathogen interaction and may prove useful in developing soybean cultivars with more durable resistance to P. sojae.


Assuntos
Arabidopsis , Phytophthora , Humanos , Resistência à Doença/genética , Glycine max/metabolismo , Phytophthora/genética , Arabidopsis/genética , Redes Reguladoras de Genes , Doenças das Plantas/genética
5.
Syst Biol ; 72(4): 802-819, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960591

RESUMO

A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macro-evolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode vs. multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. A comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts. [Codiversification; cophylogenetics; feather mites; host switching; pooled sequencing; species delineation; symbiosis, warblers.].


Assuntos
Especificidade de Hospedeiro , Ácaros , Animais , Filogenia , Ácaros/genética , Evolução Biológica , Simbiose
6.
Data Brief ; 46: 108835, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36591378

RESUMO

Feather mites are ubiquitous, permanent, obligate ectosymbionts of avian hosts and are a valuable natural system for studying host-symbiont evolutionary and ecological dynamics at multiple levels of biological organization. However, a lack of a sequenced genome impedes molecular studies using this system. Therefore, we present the first draft genome of a symbiotic feather mite, Amerodectes protonotaria Hernandes 2018. The genome sequence data presented here were derived from an individual female mite that was collected in the field from Protonotaria citrea, its only known host species. Short read sequence data were obtained using an Illumina NovaSeq 6000 platform. From these data, we assembled a 59,665,063 bp draft genome consisting of 2,399 contigs. Raw short reads and the assembled genome sequence are available at the National Center for Biotechnology Information (NCBI)'s Sequence Read Archive (SRA) under BioProject PRJNA884722. The data presented here are beneficial for future research on the biology and evolution of closely related mites and the genomics of host-symbiont interactions.

7.
PLoS One ; 16(4): e0250284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901201

RESUMO

Water deficit limits plant growth and development, resulting in quality loss of horticultural crops. However, there is limited information on gene regulation and signaling pathways related to water deficit stress response at multiple time points. The objective of this research was to investigate global gene expression patterns under water deficit stress to provide an insight into how petunia (Petunia ×hybrida 'Mitchell Diploid') responded in the process of stress. Nine-week-old petunias were irrigated daily or placed under water stress by withholding water. Stressed plants reduced stomatal conductance after five days of water deficit, indicating they perceived stress and initiated stress response mechanisms. To analyze transcriptomic changes at the early stage of water deficit, leaf tissue samples were collected 1, 3, and 5 days after water was withheld for RNA sequencing. Under water deficit stress, 154, 3611, and 980 genes were upregulated and 41, 2806, and 253 genes were downregulated on day 1, 3, and 5, respectively. Gene Ontology analysis revealed that redox homeostasis processes through sulfur and glutathione metabolism pathways, and hormone signal transduction, especially abscisic acid and ethylene, were enriched under water deficit stress. Thirty-four transcription factor families were identified, including members of AP2/ERF, NAC, MYB-related, C2H2, and bZIP families, and TFs in AP2/ERF family was the most abundant in petunia. Interestingly, only one member of GRFs was upregulated on day 1, while most of TFs were differentially expressed on day 3 and/or 5. The transcriptome data from this research will provide valuable molecular resources for understanding the early stages of water stress-responsive networks as well as engineering petunia with enhanced water stress tolerance.


Assuntos
Desidratação/genética , Regulação da Expressão Gênica de Plantas , Petunia/genética , RNA-Seq/métodos , Estresse Fisiológico/genética , Transcriptoma , Análise por Conglomerados , Regulação para Baixo , Ontologia Genética , Homeostase/genética , Petunia/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Evol Appl ; 13(8): 1949-1967, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908597

RESUMO

Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.

9.
BMC Genomics ; 18(1): 707, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886704

RESUMO

BACKGROUND: Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. RESULTS: Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. CONCLUSIONS: These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.


Assuntos
Perfilação da Expressão Gênica , Transcrição Gênica , Zea mays/genética , Mudança Climática , Produtos Agrícolas , Meio Ambiente , Genes de Plantas/genética , Variação Genética , México , Análise de Sequência de RNA
10.
J Exp Bot ; 67(5): 1311-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685185

RESUMO

Plants have evolved to extensively employ leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest family of RLKs, to control growth, development, and defense. In Arabidopsis thaliana, the EXCESS MICROSPOROCYTES1 (EMS1) LRR-RLK and its potential small protein ligand TAPETUM DETERMINANT1 (TPD1) are specifically required for anther cell differentiation; however, TPD1 and EMS1 orthologs also control megaspore mother cell proliferation in rice and maize ovules. Here, the molecular function of TPD1 was demonstrated during ovule development in Arabidopsis using a gain-of-function approach. In ovules, the EMS1 gene was primarily expressed in nucellus epidermis and chalaza, whereas the expression of TPD1 was weakly restricted to the distal end of integuments. Ectopic expression of TPD1 caused pleiotropic defects in ovule and seed development. RNA sequencing analysis showed that ectopic expression of TPD1 altered expression of auxin signaling genes and core cell-cycle genes during ovule development. Moreover, ectopic expression of TPD1 not only affected auxin response but also enhanced expression of cyclin genes CYCD3;3 and CYCA2;3 in ovules. Thus, these results provide insight into the molecular mechanism by which TPD1-EMS1 signaling controls plant development possibly via regulation of auxin signaling and cell-cycle genes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Expressão Ectópica do Gene , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/citologia , Regiões Promotoras Genéticas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais/genética , Regulação para Cima/genética
11.
Pest Manag Sci ; 71(3): 423-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24796243

RESUMO

BACKGROUND: Detoxification genes have been associated with insecticide adaptation in the diamondback moth, Plutella xylostella. The link between chemosensation genes and adaptation, however, remains unexplored. To gain a better understanding of the involvement of these genes in insecticide adaptation, the authors exposed lines of P. xylostella to either high uniform (HU) or low heterogeneous (LH) concentrations of permethrin, expecting primarily physiological or behavioral selection respectively. Initially, 454 pyrosequencing was applied, followed by an examination of expression profiles of candidate genes that responded to selection [cytochrome P450 (CYP), glutathione S-transferase (GST), carboxylesterase (CarE), chemosensory protein (CSP) and odorant-binding protein (OBP)] by quantitative PCR in the larvae. Toxicity and behavioral assays were also conducted to document the effects of the two forms of exposure. RESULTS: Pyrosequencing of the P. xylostella transcriptome from adult heads and third instars produced 198,753 reads with 52,752,486 bases. Quantitative PCR revealed overexpression of CYP4M14, CYP305B1 and CSP8 in HU larvae. OBP13, however, was highest in LH. Larvae from LH and HU lines had up to five- and 752-fold resistance levels respectively, which could be due to overexpression of P450s. However, the behavioral responses of all lines to a series of permethrin concentrations did not vary significantly in any of the generations examined, in spite of the observed upregulation of CSP8 and OBP13. CONCLUSION: Expression patterns from the target genes provide insights into behavioral and physiological responses to permethrin and suggest a new avenue of research on the role of chemosensation genes in insect adaptation to toxins.


Assuntos
Inseticidas/farmacologia , Mariposas/genética , Permetrina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Inativação Metabólica , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Larva/enzimologia , Larva/genética , Larva/fisiologia , Mariposas/enzimologia , Mariposas/fisiologia , Análise de Sequência de DNA , Transcriptoma
12.
J Genet Genomics ; 41(3): 165-75, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656236

RESUMO

In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromossomos de Plantas/genética , Troca Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Segregação de Cromossomos , Cromossomos de Plantas/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Meiose/genética , Mutação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinação Genética
13.
PLoS One ; 8(11): e81389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312295

RESUMO

Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.


Assuntos
Produtos Agrícolas/parasitologia , Cuscuta/genética , Perfilação da Expressão Gênica , Cuscuta/microbiologia , Cuscuta/fisiologia , Genes de Plantas/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie
14.
PLoS One ; 8(2): e56555, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23424668

RESUMO

BACKGROUND: Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. METHODOLOGY AND PRINCIPAL FINDINGS: We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. CONCLUSIONS AND SIGNIFICANCE: The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.


Assuntos
Besouros/genética , Genes de Insetos/genética , Odorantes , Transcriptoma , Sequência de Aminoácidos , Animais , Sequência de Bases , Besouros/fisiologia , Sinais (Psicologia) , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Dados de Sequência Molecular , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Análise de Sequência , Comportamento Sexual Animal
15.
Theor Appl Genet ; 126(4): 1121-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354974

RESUMO

Phytophthora root and stem rot caused by Phytophthora sojae Kaufmann and Gerdemann is one of the most severe soybean [Glycine max (L.) Merr] diseases in the USA. Partial resistance is as effective in managing this disease as single-gene (Rps gene)-mediated resistance and is more durable. The objective of this study was to identify quantitative trait loci (QTL) associated with partial resistance to P. sojae in PI 398841, which originated from South Korea. A population of 305 F7:8 recombinant inbred lines derived from a cross of OX20-8 × PI 398841 was used to evaluate partial resistance against P. sojae isolate C2S1 using a tray test. Composite interval mapping using a genome-wide logarithm of odd (LOD) threshold detected three QTL on chromosomes 1, 13, and 18, which individually explained 4-16 % of the phenotypic variance. Seven additional QTL, accounting for 2-3 % of phenotypic variance each, were identified using chromosome-wide LOD thresholds. Seven of the ten QTL for resistance to P. sojae were contributed by PI 398841. Seven QTL co-localized with known Rps genes and previously reported QTL for soil-borne root pathogens, isoflavone, and seed oil. Three QTL on chromosomes 3, 13, and 18 co-localized with known Rps genes, but PI 398841 did not exhibit an Rps gene-mediated resistance response following inoculation with 48 different isolates of P. sojae. PI 398841 is potentially a source of novel genes for improving soybean cultivars for partial resistance to P. sojae.


Assuntos
Resistência à Doença/genética , Glycine max/genética , Fenótipo , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética/genética , Genótipo , Escore Lod
16.
BMC Genomics ; 13: 6, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22226239

RESUMO

BACKGROUND: Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. RESULTS: We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. CONCLUSIONS: We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.


Assuntos
Percevejos-de-Cama/genética , Resistência a Medicamentos/genética , Inseticidas/química , Animais , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Mutação , Análise de Sequência de RNA , Transcriptoma
17.
Genome Res ; 22(3): 508-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22106370

RESUMO

Meiotic recombination, including crossovers (COs) and gene conversions (GCs), impacts natural variation and is an important evolutionary force. COs increase genetic diversity by redistributing existing variation, whereas GCs can alter allelic frequency. Here, we sequenced Arabidopsis Landsberg erecta (Ler) and two sets of all four meiotic products from a Columbia (Col)/Ler hybrid to investigate genome-wide variation and meiotic recombination at nucleotide resolution. Comparing Ler and Col sequences uncovered 349,171 Single Nucleotide Polymorphisms (SNPs), 58,085 small and 2315 large insertions/deletions (indels), with highly correlated genome-wide distributions of SNPs, and small indels. A total of 443 genes have at least 10 nonsynonymous substitutions in protein-coding regions, with enrichment for disease-resistance genes. Another 316 genes are affected by large indels, including 130 genes with complete deletion of coding regions in Ler. Using the Arabidopsis qrt1 mutant, two sets of four meiotic products were generated and analyzed by sequencing for meiotic recombination, representing the first tetrad analysis with whole-genome sequencing in a nonfungal species. We detected 18 COs, six of which had an associated GC event, and four GCs without COs (NCOs), and revealed that Arabidopsis GCs are likely fewer and with shorter tracts than those in yeast. Meiotic recombination and chromosome assortment events dramatically redistributed genome variation in meiotic products, contributing to population diversity. In particular, meiosis provides a rapid mechanism to generate copy-number variation (CNV) of sequences that have different chromosomal positions in Col and Ler.


Assuntos
Arabidopsis/genética , Variação Genética , Genoma de Planta , Meiose , Recombinação Genética , Troca Genética , Variações do Número de Cópias de DNA , Conversão Gênica , Estudo de Associação Genômica Ampla , Mutagênese Insercional , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Deleção de Sequência
18.
BMC Genomics ; 10: 475, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19832984

RESUMO

BACKGROUND: Meiotic recombination alters frequency and distribution of genetic variation, impacting genetics and evolution. In the budding yeast, DNA double strand breaks (DSBs) and D loops form either crossovers (COs) or non-crossovers (NCOs), which occur at many sites in the genome. Differences at the nucleotide level associated with COs and NCOs enable us to detect these recombination events and their distributions. RESULTS: We used high throughput sequencing to uncover over 46 thousand single nucleotide polymorphisms (SNPs) between two budding yeast strains and investigated meiotic recombinational events. We provided a detailed analysis of CO and NCO events, including number, size range, and distribution on chromosomes. We have detected 91 COs, very close to the average number from previous genetic studies, as well as 21 NCO events and mapped the positions of these events with high resolution. We have obtained DNA sequence-level evidence for a wide range of sizes of chromosomal regions involved in CO and NCO events. We show that a large fraction of the COs are accompanied by gene conversion (GC), indicating that meiotic recombination changes allelic frequencies, in addition to redistributing existing genetic variations. CONCLUSION: This work is the first reported study of meiotic recombination using high throughput sequencing technologies. Our results show that high-throughput sequencing is a sensitive method to uncover at single-base resolution details of CO and NCO events, including some complex patterns, providing new clues about the mechanism of this fundamental process.


Assuntos
Troca Genética , Conversão Gênica , Genoma Fúngico , Meiose , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , DNA Fúngico/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
Plant J ; 52(1): 14-29, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17666023

RESUMO

In flowering plants, the anther contains highly specialized reproductive and somatic cells that are required for male fertility. Genetic studies have uncovered several genes that are important for anther development. However, little information is available regarding most genes active during anther development, including possible relationships between these genes and genetically defined regulators. In Arabidopsis, two previously isolated male-sterile mutants display dramatically altered anther cell differentiation patterns. The sporocyteless (spl)/nozzle (nzz) mutant is defective in the differentiation of primary sporogenous cells into microsporocytes, and does not properly form the anther wall. The excess microsporocytes1 (ems1)/extrasporogenous cells (exs) mutants produce excess microsporocytes at the expense of the tapetum. To gain additional insights into microsporocyte and tapetum differentiation and to uncover potential genetic interactions, expression profiles were compared between wild-type anthers (stage 4-6) and those of the spl or ems1 mutants. A total of 1954 genes were found to be differentially expressed in the ems1 and/or spl anthers, and these were grouped into 14 co-expression clusters. The presence of genes with known and predicted functions in specific clusters suggests potential functions for other genes in the same cluster. To obtain clues about possible co-regulation within co-expression clusters, we searched for shared cis-regulatory motifs in putative promoter regions. Our analyses were combined with data from previous studies to develop a model of the anther gene regulatory network. This model includes hypotheses that can be tested experimentally to gain further understanding of the mechanisms controlling anther development.


Assuntos
Arabidopsis/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Mutação , Arabidopsis/citologia , Arabidopsis/metabolismo , Genes de Plantas , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo
20.
Mol Biol Cell ; 17(3): 1331-43, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16394097

RESUMO

Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Meiose/genética , Recombinação Genética/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Cromossomos de Plantas/ultraestrutura , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Éxons/genética , Flores/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Dados de Sequência Molecular , Mutagênese Insercional , Mutação/genética , Fenótipo , Infertilidade das Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Complexo Sinaptonêmico/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...