Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297428

RESUMO

BACKGROUND: Carvacrol, a mono-terpenoid phenol found in herbs, such as oregano and thyme, has excellent antibacterial properties against Streptococcus pyogenes. However, its mechanism of bactericidal activity on S. pyogenes has not been elucidated. OBJECTIVES: This study investigated the bactericidal mechanism of carvacrol using three strains of S. pyogenes. METHODS: Flow cytometry (FCM) experiments were conducted to determine carvacrol's membrane permeabilization and cytoplasmic membrane depolarization activities. Protoplasts of S. pyogenes were used to investigate carvacrol's effects on the membrane, followed by gel electrophoresis. The carvacrol-treated protoplasts were examined by transmission electron microscopy (TEM) to observe ultrastructural morphological changes. The fluidity of the cell membrane was measured by steady-state fluorescence anisotropy. Thin-layer chromatographic (TLC) profiling was conducted to study the affinity of carvacrol for membrane phospholipids. RESULTS: Increased membrane permeability and decreased membrane potential from FCM and electron microscopy observations revealed that carvacrol killed the bacteria primarily by disrupting membrane integrity, leading to whole-cell lysis. Ultra-structural morphological changes in the membrane induced by carvacrol over a short period were confirmed using the S. pyogenes protoplast and membrane isolate models in vitro. In addition, changes in the other biophysical properties of the bacterial membrane, including concentration- and time-dependent increased fluidity, were observed. TLC experiments showed that carvacrol preferentially interacts with membrane phosphatidylglycerol (P.G.), phosphatidylethanolamine (P.E.), and cardiolipins (CL). CONCLUSIONS: Carvacrol exhibited rapid bactericidal action against S. pyogenes by disrupting the bacterial membrane and increasing permeability, possibly due to affinity with specific membrane phospholipids, such as P.E., P.G., and CL. Therefore, the bactericidal concentration of carvacrol (250 µg/mL) could be used to develop safe and efficacious natural health products for managing streptococcal pharyngitis or therapeutic applications.

2.
Microb Pathog ; 169: 105684, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863588

RESUMO

Streptococcus pyogenes is a leading cause of chronic and acute infections, including streptococcus pharyngitis. Biofilm formation by S. pyogenes can cause tolerance against antibiotics. Although penicillin remains the first choice of antibiotic for S. pyogenes, alternative approaches have gained interest due to treatment failures and hypersensitive individuals. Carvacrol is a monoterpenoid from herbal plants with selective biocidal activity on S. pyogenes. Therefore, the present study reveals the efficacy of carvacrol in inhibiting and eradicating S. pyogenes biofilm. The antibiofilm activities were investigated using colorimetric assays, microscopy, cell surface hydrophobicity, gene expression analysis, and in-silico analysis. Carvacrol also showed a minimum biofilm inhibitory concentration (MBIC) against S. pyogenes of 125 µg/mL. The electron microscopic and confocal microscopic analyses revealed a dose-dependent suppression of biofilm formation and a reduction in the biofilm thickness by carvacrol. Carvacrol also inhibited the biofilm-associated virulence factors such as cell surface hydrophobicity. Quantitative real-time polymerase chain reaction analysis showed the downregulation of speB, srtB, luxS, covS, dltA, ciaH, and hasA genes involved in biofilm formation. The results suggested the therapeutic potential of carvacrol against biofilm-associated streptococcal infections.


Assuntos
Biofilmes , Streptococcus pyogenes , Antibacterianos/farmacologia , Cimenos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Percepção de Quorum/genética , Streptococcus pyogenes/genética
3.
Nutrients ; 14(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35276864

RESUMO

Pharyngitis is an inflammation of the pharynx caused by viral, bacterial, or non-infectious factors. In the present study, the anti-inflammatory efficacy of carvacrol was assessed using an in vitro model of streptococcal pharyngitis using human tonsil epithelial cells (HTonEpiCs) induced with Streptococcus pyogenes cell wall antigens. HTonEpiCs were stimulated by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) for 4 h followed by exposure to carvacrol for 20 h. Following exposure, interleukin (IL)-6, IL-8, human beta defensin-2 (HBD-2), epithelial-derived neutrophil-activating protein-78 (ENA-78), granulocyte chemotactic protein-2 (GCP-2), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and prostaglandin (PGE2) were measured by enzyme-linked immunosorbent assays (ELISA). The levels of pro-inflammatory cytokines, IL-6, IL-8, ENA-78, and GCP-2 were decreased in a carvacrol dose-dependent manner. The production of HBD-2 was significantly suppressed over 24 h carvacrol treatments. PGE2 and COX-2 levels in the cell suspensions were affected by carvacrol treatment. TNF-α was not detected. The cell viability of all the tested carvacrol concentrations was greater than 80%, with no morphological changes. The results suggest that carvacrol has anti-inflammatory properties, and carvacrol needs to be further assessed for potential clinical or healthcare applications to manage the pain associated with streptococcal pharyngitis.


Assuntos
Tonsila Palatina , Peptidoglicano , Biomarcadores , Parede Celular , Cimenos , Células Epiteliais , Humanos , Lipopolissacarídeos , Peptidoglicano/farmacologia , Ácidos Teicoicos
4.
Sci Rep ; 11(1): 1487, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452275

RESUMO

Streptococcus pyogenes is an important human pathogen worldwide. The identification of natural antibacterial phytochemicals has renewed interest due to the current scarcity of antibiotic development. Carvacrol is a monoterpenoid found in herbs. We evaluated carvacrol alone and combined with selected antibiotics against four strains of S. pyogenes in vitro. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against S. pyogenes were 125 µg/mL (0.53 mM) and 250 µg/mL (1.05 mM), respectively. Kill curve results showed that carvacrol exhibits instantaneous bactericidal activity against S. pyogenes. We also demonstrated the potential mechanism of action of carvacrol through compromising the cell membrane integrity. Carvacrol induced membrane integrity changes leading to leakage of cytoplasmic content such as lactate dehydrogenase enzymes and nucleic acids. We further confirmed dose-dependent rupturing of cells and cell deaths using transmission electron microscopy. The chequerboard assay results showed that carvacrol possesses an additive-synergistic effect with clindamycin or penicillin. Carvacrol alone, combined with clindamycin or penicillin, can be used as a safe and efficacious natural health product for managing streptococcal pharyngitis.


Assuntos
Membrana Celular/efeitos dos fármacos , Cimenos/farmacologia , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Membrana Celular/metabolismo , Clindamicina/farmacologia , Cimenos/metabolismo , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Penicilinas/farmacologia , Compostos Fitoquímicos/farmacologia , Streptococcus pyogenes/metabolismo
5.
Biomedicines ; 7(3)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450579

RESUMO

Herbal teas are becoming popular as functional beverages due to their various health promotional properties. This study aimed at assessing 13 hot water infusions (HWIs) from different herbs against streptococcal pharyngitis (strep throat). Licorice root exhibited the lowest minimum inhibitory concentrations (MIC) of 1.56 mg/mL, followed by barberry root, thyme, and oregano flowering shoots, with a MIC of 3.13 mg/mL. At their respective minimum bactericidal concentrations (MBC), licorice showed the bactericidal effect on S. pyogenes within 12 h after exposure while others need 24 h for a similar outcome. The HWIs exhibited inhibitory activity on biofilm formation, ranging from 1.56 to 6.25 mg/mL, which confirmed by ruptured cells or clusters of dead cell debris observed in scanning electron microscope (SEM). Overall, non-toxic concentrations of efficacious HWIs from licorice root, barberry root, thyme, and oregano flowering shoots may provide potential sources for developing herbal teas or biomedicine for the management of S. pyogenes infections.

6.
Molecules ; 24(6)2019 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-30909644

RESUMO

Background: There is a growing interest in medicinal plants which have been traditionally used for the treatment of human infections. This study assessed 14 ethanol extracts (EEs) on bacterial growth and biofilm formation of Streptococcus pyogenes. Methods: Constituent major phytochemicals in the extracts were identified using ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Micro-broth dilution and time-kill assays were used to determine antibacterial activities. Anti-biofilm activities were studied using MTT assay, and morphology of biofilms was observed by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was employed to visualize the ultra-cross section structure of bacteria treated with efficacious extracts. Results: Licorice root, purple coneflower flower, purple coneflower stem, sage leaves and slippery elm inner bark EEs were the most effective, with minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of 62.5 µg/mL and 125 µg/mL, respectively. The minimum biofilm inhibitory concentration (MBIC) of extracts ranged from 31.5⁻250 µg/mL. Morphological changes were observed in treated biofilms compared to the untreated. The four most effective extracts exhibited the ability to induce degradation of bacterial cell wall and disintegration of the plasma membrane. Conclusion: We suggest that EEs of sage leaf and purple coneflower flower are promising candidates to be further investigated for developing alternative natural therapies for the management of streptococcal pharyngitis.


Assuntos
Antibacterianos/farmacologia , Biofilmes , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Etanol/química , Flores/química , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Espectrometria de Massas em Tandem/métodos
7.
Microb Pathog ; 117: 118-127, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29452197

RESUMO

In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Origanum/química , Extratos Vegetais/farmacologia , Salvia officinalis/química , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/química , Monoterpenos Bicíclicos , Cânfora , Cimenos , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Streptococcus pyogenes/crescimento & desenvolvimento
8.
PeerJ ; 5: e3469, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652934

RESUMO

BACKGROUND: Pharyngitis is an inflammatory condition of the pharynx and associated structures commonly caused by the Group A streptococci (GAS). There is a growing interest in discovering plant-based anti-inflammatory compounds as potential alternatives to conventional drugs. This study evaluated anti-inflammatory activity of phytochemical-rich extracts prepared from 12 herbal plants using human tonsil epithelial cells (HTonEpiC) in vitro. METHODS: The HTonEpiC were induced by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) (10 µg/mL; bacterial antigens) for 4 h and then exposed to ethanol extracts (EE) or aqueous extracts (AE) for 20 h. The secretion of four pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assays (ELISA). Total phenolic and total flavonoid contents of the extracts were determined using spectrophotometric methods. RESULTS: The herbal plant extracts (≤5 µg/mL) were not cytotoxic to HTonEpiC. The extracts exhibited a broad range of reduction (1.2%-92.6%) of secretion of interleukin-8 (IL-8), human beta defensin-2 (hBD-2), epithelial-derived neutrophil activating protein-78 (ENA-78), and granulocyte chemotactic protein-2 (GCP-2). Both EE and AE of clove, ginger, and echinacea flower and EE from danshen root significantly inhibited the pro-inflammatory cytokine production as induced by LTA and PGN in HTonEpiCs at the concentrations of 1 and 5 µg/mL. DISCUSSION: Our observations indicate that danshen root, clove, ginger, and echinacea flower extracts exhibit an anti-inflammatory effect in HTonEpiCs. The most efficacious extracts from danshen root, clove, ginger and echinacea flowers have potential to be used as natural sources for developing phytotherapeutic products in the management of painful inflammation due to streptococcal pharyngitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...