Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(11): e0207665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30496205

RESUMO

Idealized passive dynamic walkers (PDW) exhibit limit cycle stability at steady state. Yet in reality, uncertainty in ground interaction forces result in variability in limit cycles even for a simple walker known as the Rimless Wheel (RW) on seemingly even slopes. This class of walkers is called metastable walkers in that they usually walk in a stable limit cycle, though guaranteed to eventually fail. Thus, control action is only needed if a failure state (i.e. RW stopping down the ramp) is imminent. Therefore, efficiency of estimating the time to reach a failure state is key to develop a minimal intervention controller to inject just enough energy to overcome a failure state when required. Current methods use what is known as a Mean First Passage Time (MFPT) from current state (rotary speed of RW at the most recent leg collision) to an arbitrary state deemed to be a failure in the future. The frequently used Markov chain based MFPT prediction requires an absorbing state, which in this case is a collision where the RW comes to a stop without an escape. Here, we propose a novel method to estimate an MFPT from current state to an arbitrary state which is not necessarily an absorbing state. This provides freedom to a controller to adaptively take action when deemed necessary. We demonstrate the proposed MFPT predictions in a minimal intervention controller for a RW. Our results show that the proposed method is useful in controllers for walkers showing up to 44.1% increase of time-to-fail compared to a PID based closed-loop controller.


Assuntos
Modelos Teóricos , Andadores , Cadeias de Markov , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA