Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 672201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552568

RESUMO

Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.

2.
Exp Dermatol ; 19(8): e117-23, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20002173

RESUMO

UVA radiation is increasingly used to treat fibrotic skin disorders. However, the mechanisms underlying the therapeutic effects of UVA for these disorders are only partially understood. Cathepsin L is a lysosomal cysteine protease, which has been shown to degrade various matrix proteins thus contributing to extracellular remodeling. Therefore, we investigated whether UVA irradiation regulates the expression and release of cathepsin L in human dermal fibroblasts. No alterations were found after single irradiation; however, a significantly increased extracellular release of cathepsin L was observed after repeated irradiation up to four times. The transcript levels of cathepsin L were elevated after repetitive irradiation, leading to increased amounts of total cathepsin L protein. Furthermore, higher amounts of extracellular cathepsin L were associated with a significant reduction of intracellular processed cathepsin L and an accumulation of unprocessed procathepsin L. The use of specific inhibitors elucidated mannose phosphate-independent sorting pathways of cathepsin L leading to enhanced secretion and reduced intracellular processing. This is the first study which demonstrates that alternate trafficking mechanisms mediate the extracellular release of a cysteine protease induced by repetitive UVA irradiation.


Assuntos
Catepsina L/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Transporte Proteico/efeitos da radiação , Raios Ultravioleta , Células Cultivadas , Tecido Conjuntivo/metabolismo , Derme/citologia , Derme/efeitos da radiação , Relação Dose-Resposta à Radiação , Precursores Enzimáticos/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Humanos
3.
Int J Cancer ; 118(11): 2735-43, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381007

RESUMO

Metastasis of malignant tumor cells involves cell-cell and cell-matrix interactions, which regulate the expression and localization of proteolytic enzymes. In the present study, we investigated the expression and localization of the lysosomal cysteine proteinase cathepsin B and its natural inhibitors cystatin A, B and C in high- (MV3), intermediate- (SKmel28) and low-invasive (SKmel23, WM164) human melanoma cell lines grown on plastic or in contact with monomeric or fibrillar collagen type I. Neither the transcript levels of cathepsin B nor those of the natural inhibitors, cystatin B and C, were altered by the interaction of melanoma cells with collagen type I. However, protein expression and cellular localization of cathepsin B and its inhibitors were markedly affected. In contrast to low-invasive cells, high-invasive cells constitutively released procathepsin B when cultured on plastic. In addition, contact of invasive cells with fibrillar collagen type I resulted in the release of both mature forms of the protease. Perturbation studies using inhibitory antibodies against the beta1 subunit of the integrin receptor indicated a role for the beta1 integrin receptor family in the regulation of cathepsin B release. Cystatin B protein expression was much lower in high-invasive cells in both culture conditions, when compared to low-invasive cells. Cystatin C expression was comparable in all cells, but cell contact to fibrillar collagen type I induced its expression. These results strongly implicate a pivotal role of cell-matrix interactions for the regulation of cathepsin B localization and activity in melanoma cells.


Assuntos
Catepsina B/biossíntese , Junções Célula-Matriz/fisiologia , Colágeno Tipo I/fisiologia , Melanoma/patologia , Neoplasias Cutâneas/patologia , Catepsina B/análise , Cistatina B , Cistatina C , Cistatinas/biossíntese , Cistatinas/fisiologia , Perfilação da Expressão Gênica , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...