Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(6): 1413-1422, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30657519

RESUMO

Design rules and application spaces for closed-shell conjugated polymers have been well established in the field of organic electronics, but the emerging class of open-shell stable radicals has not been evaluated in such detail. Thus, establishing the underlying physical phenomena associated with the interactions between both classes of molecules is imperative for the effective utilization of these soft materials. Here, we establish that Förster Resonance Energy Transfer (FRET) is the dominant mechanism by which energy transfer occurs from a common conjugated polymer to various radical species using a combination of experimental and computational approaches. Specifically, we determined this fact by monitoring the fluorescence quenching of poly(3-hexylthiophene) (P3HT) in the presence of three radical species: (1) the galvinoxyl; (2) the 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO); and (3) the 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals. Both in solution and in the solid-state, the galvinoxyl and PTIO radicals showed quenching that was on par with that of a common fullerene electron-accepting derivative, due to the considerable overlap of their absorbance spectrum with the fluorescence spectrum of the P3HT species, which indicated that isoenergetic electronic transitions existed for both species. Conversely, TEMPO showed minimal quenching at similar concentrations due to the lack of such an overlap. Furthermore, computational studies demonstrated that FRET would occur at a significantly faster rate than other competing processes. These findings suggest that long-range energy transfer can be accomplished in applications when radicals that can act as FRET acceptors are utilized, forming a new design paradigm for future applications involving both closed- and open-shell soft materials.

2.
Annu Rev Chem Biomol Eng ; 9: 83-103, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29579403

RESUMO

Although less studied than their closed-shell counterparts, materials containing stable open-shell chemistries have played a key role in many energy storage and energy conversion devices. In particular, the oxidation-reduction (redox) properties of these stable radicals have made them a substantial contributor to the progress of organic batteries. Moreover, the use of radical-based materials in photovoltaic devices and thermoelectric systems has allowed for these emerging molecules to have impacts in the energy conversion realm. Additionally, the unique doublet states of radical-based materials provide access to otherwise inaccessible spin states in optoelectronic devices, offering many new opportunities for efficient usage of energy in light-emitting devices. Here, we review the current state of the art regarding the molecular design, synthesis, and application of stable radicals in these energy-related applications. Finally, we point to fundamental and applied arenas of future promise for these designer open-shell molecules, which have only just begun to be evaluated in full.


Assuntos
Fontes de Energia Elétrica , Radicais Livres/química , Corantes Fluorescentes/química , Óxidos Heterocíclicos/química , Oxirredução , Polímeros/química , Teoria Quântica , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA