Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(45): eadh7716, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939179

RESUMO

Aerosols cool Earth's climate indirectly by increasing low cloud brightness and their coverage (Cf), constituting the aerosol indirect forcing (AIF). The forcing partially offsets the greenhouse warming and positively correlates with the climate sensitivity. However, it remains highly uncertain. Here, we show direct observational evidence for strong forcing from Cf adjustment to increased aerosols and weak forcing from cloud liquid water path adjustment. We estimate that the Cf adjustment drives between 52% and 300% of additional forcing to the Twomey effect over the ocean and a total AIF of -1.1 ± 0.8 W m-2. The Cf adjustment follows a power law as a function of background cloud droplet number concentration, Nd. It thus depends on time and location and is stronger when Nd is low. Cf only increases substantially when background clouds start to drizzle, suggesting a role for aerosol-precipitation interactions. Our findings highlight the Cf adjustment as the key process for reducing the uncertainty of AIF and thus future climate projections.

2.
Sci Adv ; 8(29): eabn7988, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867791

RESUMO

Ship-tracks are produced by ship-emitted aerosols interacting with low clouds. Here, we apply deep learning models on satellite data to produce the first global climatology map of ship-tracks. We show that ship-tracks are at the nexus of cloud physics, maritime shipping, and fuel regulation. Our map captures major shipping lanes while missing others because of background conditions. Ship-track frequency is more than 10 times higher than a previous survey, and its interannual fluctuations reflect variations in cross-ocean trade, shipping activity, and fuel regulations. Fuel regulation can alter both detected frequency and shipping routes due to cost. The 2020 fuel regulation, together with the coronavirus disease 2019 pandemic, reduced ship-track frequency to its lowest level in recent decades across the globe and may have ushered in an era of low frequency. The regulation reduces the aerosol indirect forcing from ship emissions by 46% or between 0.02 and 0.27 W m-2 given its current estimates.

3.
J Geophys Res Atmos ; 124(4): 2148-2173, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32676260

RESUMO

Since aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satellite-borne Moderate-resolution Imaging Spectroradiometer (MODIS), the Dark Target (DT) retrieval algorithm provides global aerosol optical depth (AOD at 0.55 µm) in cloud-free scenes. Since MODIS' resolution (500 m pixels, 3 km or 10 km product) is too coarse for studying near-cloud aerosol, we ported the DT algorithm to the high-resolution (~50 m pixels) enhanced-MODIS Airborne Simulator (eMAS), which flew on the high-altitude ER-2 during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Airborne Science Campaign over the U.S. in 2013. We find that even with aggressive cloud screening, the ~0.5 km eMAS retrievals show enhanced AOD, especially within 6 km of a detected cloud. To determine the cause of the enhanced AOD, we analyze additional eMAS products (cloud retrievals and degraded-resolution AOD), co-registered Cloud Physics Lidar (CPL) profiles, MODIS aerosol retrievals, and ground-based Aerosol Robotic Network (AERONET) observations. We also define spatial metrics to indicate local cloud distributions near each retrieval, and then separate into near-cloud and far-from-cloud environments. The comparisons show that low cloud masking is robust, and unscreened thin cirrus would have only a small impact on retrieved AOD. Some of the enhancement is consistent with clear-cloud transition zone microphysics such as aerosol swelling. However, 3D radiation interaction between clouds and the surrounding clear air appears to be the primary cause of the high AOD near clouds.

4.
Proc Natl Acad Sci U S A ; 113(42): 11794-11799, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27702889

RESUMO

The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

5.
J Immunol ; 171(12): 6910-8, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14662898

RESUMO

A glutamic acid at residue 69(Glu(69)) in the HLA-DPB1 gene (Glu(69)) is associated with chronic beryllium disease (CBD) and possibly beryllium sensitization (BeS). This study tested the hypothesis that MHC class II polymorphisms are important in susceptibility to BeS and CBD and that the Glu(69) variant is related to markers of disease severity. Genomic DNA was obtained from BeS (n = 50), CBD (n = 104), and beryllium-exposed nondiseased (Be-nondiseased) (n = 125) subjects. HLA-DPB1, -DRB1, and -DQB1 genotypes were determined by (sequence-specific primers) PCR. Disease severity was assessed by pulmonary function and exercise testing. A higher frequency of the DPB1 Glu(69) gene was found in CBD and BeS compared with the Be-nondiseased subjects, with odds ratios of 10.1 for CBD vs Be-nondiseased and 9.5 for BeS vs Be-nondiseased. The majority of BeS and CBD subjects displayed non-0201 Glu(69) alleles. Glu(69) homozygosity was higher in the CBD subjects, while BeS subjects were intermediate and Be-nondiseased lowest. DRB1*01 and DQB1*05 phenotypes were reduced in CBD vs Be-nondiseased subjects, while DRB1*13 and DQB1*06 were associated with CBD in the absence of Glu(69). Markers of disease severity, including a lower forced vital capacity, diffusion capacity for carbon monoxide, PaO(2) at rest, maximum workload on exercise testing, and a higher arterial-alveolar gradient at rest, were associated with Glu(69) homozygosity. We conclude that DPB1 Glu69 is a marker of sensitization and not specific for disease. Glu(69) homozygosity acts as a functional marker associated with markers of CBD severity.


Assuntos
Beriliose/genética , Beriliose/imunologia , Berílio/imunologia , Predisposição Genética para Doença , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II/genética , Imunização , Adulto , Idoso , Beriliose/epidemiologia , Berílio/efeitos adversos , Estudos de Casos e Controles , Doença Crônica , Epitopos/genética , Feminino , Genótipo , Ácido Glutâmico/genética , Antígenos HLA-DP/genética , Cadeias beta de HLA-DP , Antígenos HLA-DQ/genética , Cadeias beta de HLA-DQ , Antígenos HLA-DR/genética , Cadeias HLA-DRB1 , Cadeias HLA-DRB3 , Cadeias HLA-DRB4 , Cadeias HLA-DRB5 , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA