Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 182: 108330, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000238

RESUMO

The promotion and growth in the use of diesel fuel in passenger cars in the UK and Europe over the past two decades led to considerable adverse air quality impacts in urban areas and more widely. In this work, we construct a multi-decade analysis of passenger car emissions in the UK based on real driving emissions data. An important part of the study is the use of extensive vehicle emission remote sensing data covering multiple measurement locations, time periods, environmental conditions and consisting of over 600,000 measurements. These data are used to consider two scenarios: first, that diesel fuel use was not promoted in the early 2000s for climate mitigation reasons, and second, that there was not a dramatic decline in diesel fuel use following the Dieselgate scandal. The strong growth of diesel fuel use coincided with a time when diesel NOx emissions were high and, conversely, the strong decrease of diesel fuel use coincided with a time when diesel vehicle after-treatment systems for NOx control were effective. We estimate that the growth in diesel car use in the UK results in excess NOx emissions of 721 kt over a three decade period; equivalent to over 7 times total annual passenger car NOx emissions and greater than total UK NOx emissions of 681.8 kt in 2021 and with an associated damage cost of £5.875 billion. However, the sharp move away from diesel fuel post-Dieselgate only reduced NOx emissions by 41 kt owing to the effectiveness of modern diesel aftertreatment systems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gasolina/análise , Automóveis , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Emissões de Veículos/análise , Veículos Automotores , Óxidos de Nitrogênio/análise
2.
Sci Total Environ ; 875: 162621, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878292

RESUMO

The development of remote emission sensing techniques such as plume chasing and point sampling has progressed significantly and is providing new insight into vehicle emissions behaviour. However, the analysis of remote emission sensing data can be highly challenging and there is currently no standardised method available. In this study we present a single data processing approach to quantify vehicle exhaust emissions measured using a range of remote emission sensing techniques. The method uses rolling regression calculated over short time intervals to derive the characteristics of diluting plumes. We apply the method to high time-resolution plume chasing and point sampling data to quantify gaseous exhaust emission ratios from individual vehicles. Data from a series of vehicle emission characterisation experiments conducted under controlled conditions is used to demonstrate the potential of this approach. First, the method is validated through comparison with on-board emission measurements. Second, the ability of this approach to detect changes in NOx / CO2 ratios associated with aftertreatment system tampering and different engine operating conditions is shown. Third, the flexibility of the approach is demonstrated by varying the pollutants used as regression variables and quantifying the NO2 / NOx ratios for different vehicle types. A higher proportion of total NOx is emitted as NO2 when the selective catalytic reduction system of the measured heavy duty truck is tampered. In addition, the applicability of this approach to urban environments is illustrated using mobile measurements conducted in Milan, Italy in 2021. Emissions from local combustion sources are distinguished from a complex urban background and the spatiotemporal variability in emissions is shown. The mean NOx / CO2 ratio of 1.61 ppb/ppm is considered representative of the local vehicle fleet. It is envisaged that this approach can be used to quantify emissions from a range of mobile and stationary fuel combustion sources, including non-road vehicles, ships, trains, boilers and incinerators.

3.
Sci Total Environ ; 858(Pt 1): 159702, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309263

RESUMO

Hydraulic fracturing (fracking) is a short phase in unconventional oil and natural gas (O&G) development. Before fracking there is a lengthy period of preparation, which can represent a significant proportion of the well lifecycle. Extensive infrastructure is delivered onto site, leading to increased volumes of heavy traffic, energy generation and construction work on site. Termed the "pre-operational" period, this is rarely investigated as air quality evaluations typically focus on the extraction phase. In this work we quantify the change in air pollution during pre-operational activities at a shale gas exploration site near Kirby Misperton, North Yorkshire, England. Baseline air quality measurements were made two years prior to any shale gas activity and were used as a training dataset for random forest (RF) machine learning models. The models allowed for a comparison between observed air quality during the pre-operational phase and a counterfactual business as usual (BAU) prediction. During the pre-operational phase a significant deviation from the BAU scenario was observed. This was characterised by significant enhancements in NOx and a concurrent reduction in O3, caused by extensive additional vehicle movements and the presence of combustion sources such as generators on the well pad. During the pre-operational period NOx increased by 274 % and O3 decreased by 29 % when compared to BAU model values. There was also an increase in primary emissions of NO2 during the pre-operational phase which may have implications for the attainment of ambient air quality standards in the local surroundings. Unconventional O&G development remains under discussion as a potential option for improving the security of supply of domestic energy, tensioned however against significant environmental impacts. Here we demonstrate that the preparative work needed to begin fracking elevates air pollution in its own right, a further potential disbenefit that should be considered.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Fraturamento Hidráulico , Gás Natural/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise
4.
Philos Trans A Math Phys Eng Sci ; 380(2215): 20200449, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34865534

RESUMO

The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


Assuntos
Oryza , Áreas Alagadas , Atmosfera , Metano , Estações do Ano
5.
Sci Total Environ ; 673: 445-454, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991334

RESUMO

Rural observations of air quality and meteorological parameters (NOx, O3, NMHCs, SO2, PM) were made over a 2.5-year period (2016-2018) before, during and after preparations for hydraulic fracturing (fracking) at a shale gas exploration site near Kirby Misperton, North Yorkshire, England. As one of the first sites to apply for permits to carry out hydraulic fracturing, it has been subject to extensive regulatory and public scrutiny, as well as the focus for a major programme of long-term environmental monitoring. A baseline period of air quality monitoring (starting 2016) established the annual climatology of atmospheric composition against which a 20-week period of intensive activity on the site in preparation for hydraulic fracturing could be compared. During this 'pre-operational phase' of work in late 2017, the most significant effect was an increase in ambient NO (3-fold) and NOx (2-fold), arising from a combination of increased vehicle activity and operation of equipment on site. Although ambient NOx increased, air quality limit values for NO2 were not exceeded, even close to the well-site. Local ozone concentrations during the pre-operational period were slightly lower than the baseline phase due to titration with primary emitted NO. The activity on site did not lead to significant changes in airborne particulate matter or non-methane hydrocarbons. Hydraulic fracturing of the well did not subsequently take place and the on-site equipment was decommissioned and removed. Air quality parameters then returned to the original (baseline) climatological conditions. This work highlights the need to characterise the full annual climatology of air quality parameters against which short-term local activity changes can be compared. Based on this study, changes to ambient NOx appear to be the most significant air quality ahead of hydraulic fracturing. However, in rural locations, concentrations at individual sites are expected to be below ambient air quality limit thresholds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...