Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1772(5): 570-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17382524

RESUMO

The sarcoglycan complex in muscle consists of alpha-, beta-, gamma- and delta-sarcoglycan and is part of the larger dystrophin-glycoprotein complex (DGC), which is essential for maintaining muscle membrane integrity. Mutations in any of the four sarcoglycans cause limb-girdle muscular dystrophies (LGMD). In this report, we have identified a novel interaction between delta-sarcoglycan and the 16 kDa subunit c (16K) of vacuolar H(+)-ATPase. Co-expression studies in heterologous cell system revealed that 16K interacts specifically with delta-sarcoglycan and the highly related gamma-sarcoglycan through the transmembrane domains. In cultured C2C12 myotubes, 16K forms a complex with sarcoglycans at the plasma membrane. Loss of sarcoglycans in the sarcoglycan-deficient BIO14.6 hamster destabilizes the DGC and alters the localization of 16K at the sarcolemma. In addition, the steady state level of beta(1)-integrin is increased. Recent studies have shown that 16K also interacts directly with beta(1)-integrin and our data demonstrated that sarcoglycans, 16K and beta(1)-integrin were immunoprecipitated together in C2C12 myotubes. Since sarcoglycans have been proposed to participate in bi-directional signaling with integrins, our findings suggest that 16K might mediate the communication between sarcoglycans and integrins and play an important role in the pathogenesis of muscular dystrophy.


Assuntos
Sarcoglicanas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Integrina beta1/metabolismo , Masculino , Camundongos , Microscopia Imunoeletrônica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Sarcolema/metabolismo , Sarcolema/ultraestrutura , Transdução de Sinais
2.
Cell Microbiol ; 8(6): 939-60, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16681836

RESUMO

After internalization into macrophages non-pathogenic mycobacteria are killed within phagosomes. Pathogenic mycobacteria can block phagosome maturation and grow inside phagosomes but under some conditions can also be killed by macrophages. Killing mechanisms are poorly understood, although phago-lysosome fusion and nitric oxide (NO) production are implicated. We initiated a systematic analysis addressing how macrophages kill 'non-pathogenic'Mycobacterium smegmatis. This system was dynamic, involving periods of initial killing, then bacterial multiplication, followed by two additional killing stages. NO synthesis represented the earliest killing factor but its synthesis stopped during the first killing period. Phagosome actin assembly and fusion with late endocytic organelles coincided with the first and last killing phase, while recycling of phagosome content and membrane coincided with bacterial growth. Phagosome acidification and acquisition of the vacuolar (V) ATPase followed a different pattern coincident with later killing phases. Moreover, V-ATPase localized to vesicles distinct from classical late endosomes and lysosomes. Map kinase p38 is a crucial regulator of all processes investigated, except NO synthesis, that facilitated the host for some functions while being usurped by live bacteria for others. A mathematical model argues that periodic high and low cellular killing activity is more effective than is a continuous process.


Assuntos
Macrófagos/microbiologia , Macrófagos/fisiologia , Viabilidade Microbiana , Mycobacterium smegmatis/fisiologia , Actinas/análise , Actinas/metabolismo , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Endossomos/fisiologia , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/fisiologia , Macrolídeos/farmacologia , Macrófagos/citologia , Camundongos , Modelos Teóricos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/patogenicidade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Organelas/fisiologia , Fagossomos/química , Fagossomos/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
3.
Nat Cell Biol ; 8(2): 124-36, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16415858

RESUMO

The recruitment of the small GTPase Arf6 and ARNO from cytosol to endosomal membranes is driven by V-ATPase-dependent intra-endosomal acidification. The molecular mechanism that mediates this pH-sensitive recruitment and its role are unknown. Here, we demonstrate that Arf6 interacts with the c-subunit, and ARNO with the a2-isoform of V-ATPase. The a2-isoform is targeted to early endosomes, interacts with ARNO in an intra-endosomal acidification-dependent manner, and disruption of this interaction results in reversible inhibition of endocytosis. Inhibition of endosomal acidification abrogates protein trafficking between early and late endosomal compartments. These data demonstrate the crucial role of early endosomal acidification and V-ATPase/ARNO/Arf6 interactions in the regulation of the endocytic degradative pathway. They also indicate that V-ATPase could modulate membrane trafficking by recruiting and interacting with ARNO and Arf6; characteristics that are consistent with the role of V-ATPase as an essential component of the endosomal pH-sensing machinery.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Endossomos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fator 6 de Ribosilação do ADP , Cloreto de Amônio/farmacologia , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , Dinaminas/genética , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Macrolídeos/farmacologia , Camundongos , Modelos Biológicos , Mutação/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico/fisiologia , Soroalbumina Bovina/metabolismo , Transfecção , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética
4.
Virology ; 313(2): 415-26, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12954209

RESUMO

The high risk forms of human papillomavirus (HPV) (primarily types 16 and 18) are the leading cause of cervical cancer worldwide. Infection results in expression of three oncoproteins, E5, E6, and E7, the latter two being of predominant importance in maintaining a transformed state of the host epithelial cell. While little is known about the role(s) of the HPV E5, the bovine papillomavirus type 1 (BPV1) E5 protein has been well characterized. A study of HPV16 E5 was performed, focusing on the protein's ability to self-interact, its ability to bind to the 16-kDa subunit of the vacuolar H(+)-ATPase (16K), and its cellular localization. As has been previously shown for BPV1 E5, we found that HPV16 E5 is also capable of self-interaction and binding to 16K. Further, we examined which portions of the HPV16 E5 protein were involved in these interactions using progressive deletions of putative transmembrane helices of the protein. All of the E5 deletion mutants tested bound to full-length E5 as well as to 16K, suggesting that these protein-protein interactions are based on hydrophobic interactions. The majority of E5 expressed in HEK 293-T7 cells was perinuclear but did not appear to localize to the cis/medial-Golgi, in contrast to previous reports for both HPV16 E5 and BPV1 E5.


Assuntos
Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Dimerização , Imunofluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , Ligação Proteica , Transfecção , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
Protein Expr Purif ; 30(1): 1-10, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12821315

RESUMO

The E5 proteins of human papillomavirus (HPV) are highly hydrophobic transmembrane proteins that display weak transforming activity. The HPV E5 proteins are localized largely to intracellular membranes, such as the Golgi apparatus and endoplasmic reticulum, but also appear in the plasma membrane. Infection with HPV16 is the cause of over 90% of human cervical cancers. HPV E5 is known to interact with growth factor receptors and gap junction proteins and is believed to play a role during the initiation of neoplasia. The structure of HPV E5 and the mechanism of its interactions with growth factor receptors remain largely unknown. In the present studies, the E5 protein of HPV16 was cloned into the pBAD/TOPO vector fused to an N-terminal thioredoxin leader and a C-terminal His-tag, and expressed in Escherichia coli. The identity of the protein was confirmed by immunoblotting using antibodies against a V5-epitope tag engineered into the protein. Due to formation of high molecular mass superaggregates of the protein, two chromatography steps were employed for its purification: (1) gel filtration chromatography to separate the superaggregated protein from other soluble proteins and (2) Ni-chelate affinity chromatography in the presence of detergent. The superaggregates of the E5-fusion protein were broken down to monomers and various oligomers by sonication in the presence of 0.2% SDS. The purified E5-fusion protein was then reconstituted into lipid vesicles and initial structural analysis of the protein was performed using circular dichroism spectroscopy.


Assuntos
Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/isolamento & purificação , Papillomaviridae/química , Cromatografia de Afinidade , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...