Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 1(1): pgac001, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712792

RESUMO

Infectious disease surveillance is vitally important to maintaining health security, but these efforts are challenged by the pace at which new pathogens emerge. Wastewater surveillance can rapidly obtain population-level estimates of disease transmission, and we leverage freedom from disease principles to make use of nondetection of SARS-CoV-2 in wastewater to estimate the probability that a community is free from SARS-CoV-2 transmission. From wastewater surveillance of 24 treatment plants across upstate New York from May through December of 2020, trends in the intensity of SARS-CoV-2 in wastewater correlate with trends in COVID-19 incidence and test positivity (⍴ > 0.5), with the greatest correlation observed for active cases and a 3-day lead time between wastewater sample date and clinical test date. No COVID-19 cases were reported 35% of the time the week of a nondetection of SARS-CoV-2 in wastewater. Compared to the United States Centers for Disease Control and Prevention levels of transmission risk, transmission risk was low (no community spared) 50% of the time following nondetection, and transmission risk was moderate or lower (low community spread) 92% of the time following nondetection. Wastewater surveillance can demonstrate the geographic extent of the transmission of emerging pathogens, confirming that transmission risk is either absent or low and alerting of an increase in transmission. If a statewide wastewater surveillance platform had been in place prior to the onset of the COVID-19 pandemic, policymakers would have been able to complement the representative nature of wastewater samples to individual testing, likely resulting in more precise public health interventions and policies.

2.
Water Res X ; 11: 100100, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33842875

RESUMO

Wastewater surveillance of SARS-CoV-2 RNA is increasingly being incorporated into public health efforts to respond to the COVID-19 pandemic. In order to obtain the maximum benefit from these efforts, approaches to wastewater monitoring need to be rapid, sensitive, and relatable to relevant epidemiological parameters. In this study, we present an ultracentrifugation-based method for the concentration of SARS-CoV-2 wastewater RNA and use crAssphage, a bacteriophage specific to the human gut, to help account for RNA loss during transit in the wastewater system and sample processing. With these methods, we were able to detect, and sometimes quantify, SARS-CoV-2 RNA from 20 mL wastewater samples within as little as 4.5 hours. Using known concentrations of bovine coronavirus RNA and deactivated SARS-CoV-2, we estimate recovery rates of approximately 7-12% of viral RNA using our method. Results from 24 sewersheds across Upstate New York during the spring and summer of 2020 suggested that stronger signals of SARS-CoV-2 RNA from wastewater may be indicative of greater COVID-19 incidence in the represented service area approximately one week in advance. SARS-CoV-2 wastewater RNA was quantifiable in some service areas with daily positives tests of less than 1 per 10,000 people or when weekly positive test rates within a sewershed were as low as 1.7%. crAssphage DNA concentrations were significantly lower during periods of high flow in almost all areas studied. After accounting for flow rate and population served, crAssphage levels per capita were estimated to be about 1.35 × 1011 and 2.42 × 108 genome copies per day for DNA and RNA, respectively. A negative relationship between per capita crAssphage RNA and service area size was also observed likely reflecting degradation of RNA over long transit times. Our results reinforce the potential for wastewater surveillance to be used as a tool to supplement understanding of infectious disease transmission obtained by traditional testing and highlight the potential for crAssphage co-detection to improve interpretations of wastewater surveillance data.

3.
Environ Sci Process Impacts ; 22(11): 2147-2161, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104143

RESUMO

Wastewater entering sewer networks represents a unique source of pooled epidemiological information. In this study, we coupled online solid-phase extraction with liquid chromatography-high resolution mass spectrometry to achieve high-throughput analysis of health and lifestyle-related substances in untreated municipal wastewater during the coronavirus disease 2019 (COVID-19) pandemic. Twenty-six substances were identified and quantified in influent samples collected from six wastewater treatment plants during the COVID-19 pandemic in central New York. Over a 12 week sampling period, the mean summed consumption rate of six major substance groups (i.e., antidepressants, antiepileptics, antihistamines, antihypertensives, synthetic opioids, and central nervous system stimulants) correlated with disparities in household income, marital status, and age of the contributing populations as well as the detection frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater and the COVID-19 test positivity in the studied sewersheds. Nontarget screening revealed the covariation of piperine, a nontarget substance, with SARS-CoV-2 RNA in wastewater collected from one of the sewersheds. Overall, this proof-of-the-concept study demonstrated the utility of high-throughput wastewater analysis for assessing the population-level substance use patterns during a public health crisis such as COVID-19.


Assuntos
Infecções por Coronavirus , Coronavirus , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Humanos , New York , SARS-CoV-2 , Águas Residuárias
4.
PLoS One ; 14(11): e0222883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725720

RESUMO

Bog turtles (Glyptemys muhlenbergii) are listed as Species of Greatest Conservation Need (SGCN) for wildlife action plans in every state it occurs and multi-state efforts are underway to better characterize extant populations and prioritize restoration efforts. However, traditional sampling methods can be ineffective due to the turtle's wetland habitat, small size, and burrowing nature. Molecular methods, such as qPCR, provide the ability to overcome this challenge by effectively quantifying minute amounts of turtle DNA left behind in its environment (eDNA). Developing such methods for bog turtles has proved difficult partly because of the high sequence similarity between bog turtles and closely-related, cohabitating species, most often wood turtles (Glyptemys insculpta). Additionally, substrates containing bog turtle eDNA are often rich in organics or other substances that frequently inhibit both DNA extraction and qPCR amplification. Here, we describe the development and validation of a qPCR assay, BT3, targeting the mitochondrial cytochrome oxidase I gene that correctly identifies bog turtles with 100% specificity and sensitivity when tested on 201 blood samples collected from six species over a wide geographic range. We also developed a full-process internal control employing a genetically modified strain of Caenorhabditis elegans to improve DNA extraction methods, limit false negative results due to qPCR inhibition, and measure total DNA recovery from each sample. Using the internal control, we found that DNA recovery varied by over an order of magnitude between samples and likely explains the lack of bog turtle detection in some cases. Methods presented herein are highly-specific and may offer a more cost effective, non-invasive tool to supplement bog turtle population assessments in the Eastern United States. Poor or differential DNA recovery, which remains unmeasured in the vast majority of eDNA studies, significantly reduced the ability to detect bog turtle in their natural environment.


Assuntos
DNA Ambiental/análise , Tartarugas/genética , Animais , Animais Selvagens/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Espécies em Perigo de Extinção , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Estados Unidos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA