Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Rev ; 56(2): 145-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478383

RESUMO

Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.


Assuntos
Citocromo P-450 CYP2J2 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Síndrome do QT Longo , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Animais
2.
Adv Pharmacol ; 97: 201-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236759

RESUMO

The seminal discovery that cytochrome P450 enzymes (CYPs) can oxidize polyunsaturated fatty acids (PUFAs) sparked a new area of research aimed at discovering the role of these metabolites in cardiac physiology and pathophysiology. CYPs metabolize arachidonic acid, an ω-6 PUFA, to alcohols and epoxides with the latter providing cardioprotection following myocardial infarction, hypertrophy, and diabetes-induced cardiomyopathy through their anti-inflammatory, vasodilatory and antioxidant properties. Despite their protective properties, the use of EETs as therapeutic agents is hampered mainly by their rapid hydrolysis to less active vicinal diols by soluble epoxide hydrolase (sEH). Several approaches have been investigated to prolong EET signaling effects using small molecule sEH inhibitors, chemically and biologically stable analogs of EETs and more recently, through the development of an sEH vaccine. Alternatively, research investigating the cardioprotective outcomes of ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly focused on dietary intake or supplementation studies. EPA and DHA have overlapping but distinct effects on myocardial function and merit separate studies to fully understand their mechanism of cardiac protection. In contrast to EETs, relatively fewer studies examined the protective mechanisms of EPA and DHA derived epoxides to determine if some protective effects are in part due to the CYP mediated downstream metabolites. The actions of CYPs on PUFAs generate potent oxylipins utilizing diverse cardioprotective mechanisms and the extent of their full potential will be important for the future development of therapeutics to prevent or treat cardiovascular disease.


Assuntos
Ácidos Graxos Ômega-3 , Oxilipinas , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Compostos de Epóxi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...