Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurophysiol ; 100(4): 1936-48, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667547

RESUMO

The suggestion that NMDA receptor (NMDAR)-dependent plasticity is subunit specific, with NR2B-types required for long-term depression (LTD) and NR2A-types critical for the induction of long-term potentiation (LTP), has generated much attention and considerable debate. By investigating the suggested subunit-specific roles of NMDARs in the mouse primary visual cortex over development, we report several important findings that clarify the roles of NMDAR subtypes in synaptic plasticity. We observed that LTD was not attenuated by application of ifenprodil, an NR2B-type antagonist, or NVP-AAM007, a less selective NR2A-type antagonist. However, we were surprised that NVP-AAM007 completely blocked adult LTP (postnatal day (P) 45-90), while only modestly affecting juvenile LTP (P21-28). To assess whether this developmental transition reflected an increasing role for NR2A-type receptors with maturity, we characterized the specificity of NVP-AAM007. We found not only that NVP-AAM007 lacks discernable subunit specificity but also that the effects of NVP-AAM077 on LTP could be mimicked using subsaturating concentrations of APV, a global NMDAR antagonist. These results indicate that the effects of NVP-AAM077 on synaptic plasticity are largely explained by nonspecific blockade of NMDARs. Moreover our findings are the first to reveal a developmental increase in the sensitivity of LTP to NMDAR antagonism. We suggest that discrepant reports describing the effect of NVP-AAM077 on LTP may be partially explained by this developmental shift in the properties of LTP. These results indicate that the degree of NMDAR activation required for LTP increases with development, providing insight into a novel underlying mechanism governing the properties of synaptic plasticity.


Assuntos
Envelhecimento/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia , Animais , Western Blotting , Eletrofisiologia , Potenciais Evocados Visuais/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/fisiologia , Feminino , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Quinoxalinas/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Frações Subcelulares/metabolismo , Córtex Visual/metabolismo
2.
J Lipid Res ; 48(8): 1857-72, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17525475

RESUMO

Phosphatidylinositol transfer proteins (PITPs) bind phosphatidylinositol (PtdIns) and phosphatidylcholine and play diverse roles in coordinating lipid metabolism/signaling with intracellular functions. The underlying mechanisms remain unclear. Genetic ablation of PITPalpha in mice results in neonatal lethality characterized by intestinal and hepatic steatosis, spinocerebellar neurodegeneration, and glucose homeostatic defects. We report that mice expressing a PITPalpha selectively ablated for PtdIns binding activity (Pitpalpha(T59D)), as the sole source of PITPalpha, exhibit phenotypes that recapitulate those of authentic PITPalpha nullizygotes. Analyses of mice with graded reductions in PITPalpha activity reveal proportionately graded reductions in lifespan, demonstrate that intestinal steatosis and hypoglycemia are apparent only when PITPalpha protein levels are strongly reduced (>or=90%), and correlate steatotic and glucose homeostatic defects with cerebellar inflammatory disease. Finally, reconstitution of PITPalpha expression in the small intestine substantially corrects the chylomicron retention disease and cerebellar inflammation of Pitpalpha(0/0) neonates, but does not rescue neonatal lethality in these animals. These data demonstrate that PtdIns binding is an essential functional property of PITPalpha in vivo, and suggest a causal linkage between defects in lipid transport and glucose homeostasis and cerebellar inflammatory disease. Finally, the data also demonstrate intrinsic neuronal deficits in PITPalpha-deficient mice that are independent of intestinal lipid transport defects and hypoglycemia.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , Alelos , Animais , Sítios de Ligação , Doenças Cerebelares/metabolismo , Doenças Cerebelares/patologia , Cerebelo/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Glucose/metabolismo , Enteropatias/metabolismo , Enteropatias/patologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Genéticos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fenótipo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...