Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 111(6): 664-71, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21227587

RESUMO

Nanometre scale clusters form in Cu-containing reactor pressure vessel (RPV) steels during neutron irradiation. These clusters have a deleterious effect on mechanical properties, which can result in embrittlement and limit the reactor operating life. Thermal ageing of RPV steels can also induce the formation of solute clusters but it is not clear how similar these are to those formed during irradiation. In this work atom probe tomography, combined with detailed structural assessments of the structure of solute clusters, is used to address this issue. A series of thermal ageing heat treatments has been performed on several high- and low-Ni RPV welds to produce 1-4 nm diameter solute clusters. The same materials have also been neutron irradiated. The results show that CuMnNiSi enriched clusters formed during thermal ageing have, on average, higher Cu contents and lower Mn, Ni and Si contents than those found in irradiation-induced clusters. The effect of increasing bulk Ni is to encourage the formation of clusters with significantly higher Ni content, slightly higher Mn and Si contents and significantly lower Cu contents. At very high doses and dose rates MnNiSi enriched clusters can form even in high-Cu welds. Despite differences in the compositions of individual clusters formed during irradiation and during thermal ageing, clusters in both exhibit similar structure. In particular, well developed clusters in both materials have Cu-enriched cores whose peripheries are enriched in Ni, Mn and, in most cases, Si.

2.
Ultramicroscopy ; 111(6): 440-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21227588

RESUMO

Variants of the maximum separation method have become the de-facto methodologies for the characterisation of nanometre scale clusters in atom probe tomography (APT) data obtained from dilute solid solutions. All variants rely on a number of parameters and it is well known that the precise values for these parameters strongly influence estimates of cluster size and number density. Quantitative analyses require an improved understanding of the inter-relationship between user-defined parameters, experimental parameters such as detection efficiency and the resultant parameterisation of the microstructure. A series of simulations has been performed to generate clusters with a range of compositions (50-100%) and diameters (1.5-2.5 nm) in a dilute solid solution. The data were degraded to simulate the effects of the finite detection efficiencies and positioning uncertainties associated with the ECOPoSAP and LEAP-3000X HR. An extensive analysis of each resultant dataset, using a range of values for the maximum separation parameters was then performed. Optimum values for each material condition were identified and it is shown that it is possible to characterise cluster size, number density and matrix chemistry. However, accurate estimates of cluster compositions are more difficult and absolute measurements must be treated with caution. Furthermore, it is shown that D(MAX) must increase with decreasing detection efficiency and consequently clusters of a specific size will appear slightly larger in atom probes with a lower detection efficiency.

3.
Ultramicroscopy ; 111(6): 676-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21232865

RESUMO

In this work, the importance of optimising experimental conditions for the analysis of reactor pressure vessel (RPV) steels using atom probe tomography is explored. The quality of the resultant atom probe data is assessed in terms of detection efficiency, noise levels and mass resolution. It is demonstrated that artefacts can exist even when experimental conditions have been optimised. In particular, it is shown that surface diffusion of some minority species, including P and Si, to major poles prior to field evaporation can be an issue. The effects were most noticeable during laser pulsing. The impact of surface migration on the characterisation of dislocations and grain boundaries is assessed. The importance of selecting appropriate regions of the reconstructed data for subsequent re-analysis is emphasised.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...