Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(11): 11D815, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430228

RESUMO

The pre-existing ORNL scrape-off-layer (SOL) reflectometer that operated with the X-mode R-cutoff at 6-27 GHz to measure SOL density profiles on NSTX is being upgraded to be functional at the increased magnetic fields on NSTX-U spherical tokamak. Rather than increasing the operating frequencies to measure the higher X-mode R-cutoff frequencies on NSTX-U, it will be shown that the combined use of the X-mode R, L and O-mode cutoffs at 6-27 GHz can obtain the desired SOL density profiles. The potential capabilities and obstacles of this technique to measure SOL density profiles and possibly SOL magnetic field profiles on NSTX-U will be discussed.

2.
Rev Sci Instrum ; 81(10): 10D914, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033946

RESUMO

Microwave reflectometry will be used on ITER to measure the electron density profile, density fluctuations due to MHD/turbulence, edge localized mode (ELM) density transients, and as an L-H transition monitor. The ITER low field side reflectometer system will measure both core and edge quantities using multiple antenna arrays spanning frequency ranges of 15-155 GHz for the O-mode system and 55-220 GHz for the X-mode system. Optimization studies using the GENRAY ray-tracing code have been done for edge and core measurements. The reflectometer launchers will utilize the HE11 mode launched from circular corrugated waveguide. The launched beams are assumed to be Gaussian with a beam waist diameter of 0.643 times the waveguide diameter. Optimum launcher size and placement are investigated by computing the antenna coupling between launchers, assuming the launched and received beams have a Gaussian beam pattern.

3.
Rev Sci Instrum ; 81(10): 10D920, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033952

RESUMO

A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

4.
Rev Sci Instrum ; 79(10): 10F114, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044598

RESUMO

A two-frequency x-mode reflectometer operating from 100 to 146 GHz is deployed on Alcator C-Mod to measure the density profile and fluctuations in the scrape-off layer (SOL) immediately in front of the new J-port ICRF antenna and the new C-port lower hybrid launcher. The reflectometer covers densities from 10(16) to 10(20) m(-3) at 5-5.4 T. To provide the greatest flexibility and capability to deal with density fluctuations approaching 100% peak-to-peak in the SOL, both full-phase and differential-phase measurement capabilities with sweep speeds of approximately 10 micros to >1 ms are implemented. The differential-phase measurement uses a difference frequency of 500 MHz, corresponding to cutoff layer separations ranging from about 0.1 to 1 mm. The reflectometer has six sets of launchers: three on the ICRF antenna and three on the lower hybrid launcher. Both the ICRF antenna and the lower hybrid launcher incorporate reflectometer antennas at their top, bottom, and midplane locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...