Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; : e0075324, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940524

RESUMO

Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (Caudoviricetes), giant viruses (Nucleocytoviricota, or NCLDV), and RNA viruses (Orthornavirae). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.IMPORTANCEAs seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems.

2.
Microbiol Resour Announc ; 13(6): e0029224, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700347

RESUMO

Here, we report the draft genome of Aureococcus anophagefferens strain CCMP1851, which is susceptible to the virus Kratosvirus quantuckense. CCMP1851 complements an available genome for a virus-resistant strain (CCMP1850) isolated from the same bloom. Future studies can now use this genome to examine genetic hints of virus resistance and susceptibility.

3.
Hum Mol Genet ; 33(11): 1001-1014, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38483348

RESUMO

The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.


Assuntos
Repetições Minissatélites , Pâncreas Exócrino , Humanos , Repetições Minissatélites/genética , Animais , Camundongos , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/enzimologia , Células HEK293 , Mutagênese Insercional/genética , Alelos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/enzimologia , Frequência do Gene , Masculino , Feminino , Lipase/genética
4.
Pancreatology ; 24(4): 511-521, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485544

RESUMO

BACKGROUND & AIMS: Protease-sensitive PNLIP variants were recently associated with chronic pancreatitis (CP) in European populations. The pathological mechanism yet remains elusive. Herein, we performed a comprehensive genetic and functional analysis of PNLIP variants found in a large Chinese cohort, aiming to further unravel the enigmatic association of PNLIP variants with CP. METHODS: All coding and flanking intronic regions of the PNLIP gene were analyzed for rare variants by targeted next-generation sequencing in 1082 Chinese CP patients and 1196 controls. All novel missense variants were subject to analysis of secretion, lipase activity, and proteolytic degradation. One variant was further analyzed for its potential to misfold and induce endoplasmic reticulum (ER) stress. p.F300L, the most common PNLIP variant associated with CP, was used as a control. RESULTS: We identified 12 rare heterozygous PNLIP variants, with 10 being novel. The variant carrier frequency did not differ between the groups. Of them, only the variant p.A433T found in a single patient was considered pathologically relevant. p.A433T exhibited increased susceptibility to proteolytic degradation, which was much milder than p.F300L. Interestingly, both variants exhibited an increased tendency to misfold, leading to intracellular retention as insoluble aggregates, reduced secretion, and elevated ER stress. CONCLUSIONS: Our genetic and functional analysis of PNLIP variants identified in a Chinese CP cohort suggests that the p.A433T variant and the previously identified p.F300L variant are not only protease-sensitive but also may be potentially proteotoxic. Mouse studies of the PNLIP p.F300L and p.A433T variants are needed to clarify their role in CP.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Pancreatite Crônica , Humanos , Pancreatite Crônica/genética , Masculino , Povo Asiático/genética , Feminino , Estudos de Coortes , Pessoa de Meia-Idade , Adulto , Lipase/genética , Estresse do Retículo Endoplasmático/genética , China/epidemiologia , Mutação de Sentido Incorreto , Idoso , Variação Genética , População do Leste Asiático
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366077

RESUMO

The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.


Assuntos
Diatomáceas , Diatomáceas/genética , Ecossistema , Camada de Gelo , Lagos , Água
6.
Front Microbiol ; 14: 1284617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098665

RESUMO

Since the discovery of the first "giant virus," particular attention has been paid toward isolating and culturing these large DNA viruses through Acanthamoeba spp. bait systems. While this method has allowed for the discovery of plenty novel viruses in the Nucleocytoviricota, environmental -omics-based analyses have shown that there is a wealth of diversity among this phylum, particularly in marine datasets. The prevalence of these viruses in metatranscriptomes points toward their ecological importance in nutrient turnover in our oceans and as such, in depth study into non-amoebal Nucleocytoviricota should be considered a focal point in viral ecology. In this review, we report on Kratosvirus quantuckense (née Aureococcus anophagefferens Virus), an algae-infecting virus of the Imitervirales. Current systems for study in the Nucleocytoviricota differ significantly from this virus and its relatives, and a litany of trade-offs within physiology, coding potential, and ecology compared to these other viruses reveal the importance of K. quantuckense. Herein, we review the research that has been performed on this virus as well as its potential as a model system for algal-virus interactions.

7.
PLoS One ; 18(12): e0295257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100448

RESUMO

Research into marine iron cycles and biogeochemistry has commonly relied on the use of chelators (including siderophores) to manipulate iron bioavailability. To test whether a commonly used chelator, desferrioxamine B (DFB) caused effects beyond changing the iron-status of cells, cultures of the environmentally relevant marine heterotrophic bacterium, Ruegeria pomeroyii, were grown in media with different concentrations of iron and/or DFB, resulting in a gradient of iron availability. To determine how cells responded, transcriptomes were generated for cells from the different treatments and analyzed to determine how cells reacted to these to perturbations. Analyses were also performed to look for cellular responses specific to the presence of DFB in the culture medium. As expected, cells experiencing different levels of iron availability had different transcriptomic profiles. While many genes related to iron acquisition were differentially expressed between treatments, there were many other genes that were also differentially expressed between different sample types, including those related to the uptake and metabolism of other metals as well as genes related to metabolism of other types of molecules like amino acids and carbohydrates. We conclude that while DFB certainly altered iron availability to cells, it also appears to have had a general effect on the homeostasis of other metals as well as influenced metabolic processes outside of metal acquisition.


Assuntos
Desferroxamina , Ferro , Ferro/metabolismo , Desferroxamina/farmacologia , Desferroxamina/metabolismo , Sideróforos/genética , Metais , Quelantes
8.
Pancreatology ; 23(8): 1036-1040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926600

RESUMO

BACKGROUND/OBJECTIVES: Studies of a rare homozygous missense mutation identified in two brothers diagnosed with congenital pancreatic lipase deficiency (CPLD) provided the first definitive evidence linking CPLD with missense mutations in the gene of PNLIP. Herein, we investigated the molecular basis for the loss-of-function in the three novel PNLIP variants (c.305G > A, p.(W102∗); c.562C > T, p.(R188C); and c.1257G > A, p.(W419∗)) associated with CPLD. METHODS: We characterized three novel PNLIP variants in transfected cells by assessing their secretion, intracellular distribution, and markers of endoplasmic reticulum (ER) stress. RESULTS: All three variants had secretion defects. Notably, the p.R188C and p.W419∗ variants induced misfolding of PNLIP and accumulated as detergent-insoluble aggregates resulting in elevated BiP at both protein and mRNA levels indicating increased ER stress. CONCLUSIONS: All three novel PNLIP variants cause a loss-of-function through impaired secretion. Additionally, the p.R188C and p.W419∗ variants may induce proteotoxicity through misfolding and potentially increase the risk for pancreatic acinar cell injury.


Assuntos
Células Acinares , Lipase , Pancreatopatias , Humanos , Masculino , Células Acinares/enzimologia , Lipase/deficiência , Lipase/genética , Mutação de Sentido Incorreto , Pancreatopatias/congênito , Pancreatopatias/enzimologia , Células HEK293
9.
Harmful Algae ; 129: 102531, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951605

RESUMO

For Microcystis aeruginosa PCC 7806, temperature decreases from 26 °C to 19 °C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, reactive oxygen species damage, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19 °C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.


Assuntos
Microcistinas , Microcystis , Microcistinas/metabolismo , Temperatura Baixa , Espécies Reativas de Oxigênio/metabolismo , Aclimatação
10.
Microbiol Resour Announc ; 12(11): e0070023, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37855595

RESUMO

Here we report the complete, closed genome of the non-toxic Microcystis aeruginosa PCC7806 ΔmcyB mutant strain. This genome is 5,103,923 bp long, with a GC content of 42.07%. Compared to the published wild-type genome (Microcystis aeruginosa PCC7806SL), there is evidence of accumulated mutations beyond the inserted chloramphenicol resistance marker.

11.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693631

RESUMO

For Microcystis aeruginosa PCC 7806, temperature decreases from 26° C to 19° C double the microcystin quota per cell during growth in continuous culture. Here we tested whether this increase in microcystin provided M. aeruginosa PCC 7806 with a fitness advantage during colder-temperature growth by comparing cell concentration, cellular physiology, and the transcriptomics-inferred metabolism to a non-toxigenic mutant strain M. aeruginosa PCC 7806 ΔmcyB. Photo-physiological data combined with transcriptomic data revealed metabolic changes in the mutant strain during growth at 19° C, which included increased electron sinks and non-photochemical quenching. Increased gene expression was observed for a glutathione-dependent peroxiredoxin during cold treatment, suggesting compensatory mechanisms to defend against reactive oxygen species are employed in the absence of microcystin in the mutant. Our observations highlight the potential selective advantages of a longer-term defensive strategy in management of oxidative stress (i.e., making microcystin) vs the shorter-term proactive strategy of producing cellular components to actively dissipate or degrade oxidative stress agents.

12.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36828391

RESUMO

Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles. Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate. Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging-if not impossible-without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi, protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective, we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world context, we consider how these processes may operate in peatlands-globally significant carbon sinks that are threatened by climate change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex interactions and temperature responses within microbial food webs.


Assuntos
Viroses , Vírus , Humanos , Ecossistema , Aquecimento Global , Mudança Climática , Carbono
13.
mSystems ; 8(2): e0126022, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794943

RESUMO

Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.


Assuntos
Vírus Gigantes , Viroses , Vírus , Humanos , Vírus Gigantes/genética , Ferro , Oceanos e Mares , Vírus/genética , Água , Eucariotos
14.
Gut ; 72(7): 1340-1354, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36631248

RESUMO

OBJECTIVE: Increasing evidence implicates mutation-induced protein misfolding and endoplasm reticulum (ER) stress in the pathophysiology of chronic pancreatitis (CP). The paucity of animal models harbouring genetic risk variants has hampered our understanding of how misfolded proteins trigger CP. We previously showed that pancreatic triglyceride lipase (PNLIP) p.T221M, a variant associated with steatorrhoea and possibly CP in humans, misfolds and elicits ER stress in vitro suggesting proteotoxicity as a potential disease mechanism. Our objective was to create a mouse model to determine if PNLIP p.T221M causes CP and to define the mechanism. DESIGN: We created a mouse model of Pnlip p.T221M and characterised the structural and biochemical changes in the pancreas aged 1-12 months. We used multiple methods including histochemistry, immunostaining, transmission electron microscopy, biochemical assays, immunoblotting and qPCR. RESULTS: We demonstrated the hallmarks of human CP in Pnlip p.T221M homozygous mice including progressive pancreatic atrophy, acinar cell loss, fibrosis, fatty change, immune cell infiltration and reduced exocrine function. Heterozygotes also developed CP although at a slower rate. Immunoblot showed that pancreatic PNLIP T221M misfolded as insoluble aggregates. The level of aggregates in homozygotes declined with age and was much lower in heterozygotes at all ages. The Pnlip p.T221M pancreas had increased ER stress evidenced by dilated ER, increased Hspa5 (BiP) mRNA abundance and a maladaptive unfolded protein response leading to upregulation of Ddit3 (CHOP), nuclear factor-κB and cell death. CONCLUSION: Expression of PNLIP p.T221M in a preclinical mouse model results in CP caused by ER stress and proteotoxicity of misfolded mutant PNLIP.


Assuntos
Pancreatite Crônica , Camundongos , Humanos , Animais , Pancreatite Crônica/genética , Pâncreas/metabolismo , Células Acinares/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Chaperona BiP do Retículo Endoplasmático
15.
Environ Microbiol Rep ; 15(1): 3-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36096485

RESUMO

Billions of years ago, the Earth's waters were dominated by cyanobacteria. These microbes amassed to such formidable numbers, they ushered in a new era-starting with the Great Oxidation Event-fuelled by oxygenic photosynthesis. Throughout the following eon, cyanobacteria ceded portions of their global aerobic power to new photoautotrophs with the rise of eukaryotes (i.e. algae and higher plants), which co-existed with cyanobacteria in aquatic ecosystems. Yet while cyanobacteria's ecological success story is one of the most notorious within our planet's biogeochemical history, scientists to this day still seek to unlock the secrets of their triumph. Now, the Anthropocene has ushered in a new era fuelled by excessive nutrient inputs and greenhouse gas emissions, which are again reshaping the Earth's biomes. In response, we are experiencing an increase in global cyanobacterial bloom distribution, duration, and frequency, leading to unbalanced, and in many instances degraded, ecosystems. A critical component of the cyanobacterial resurgence is the freshwater-marine continuum: which serves to transport blooms, and the toxins they produce, on the premise that "water flows downhill". Here, we identify drivers contributing to the cyanobacterial comeback and discuss future implications in the context of environmental and human health along the aquatic continuum. This Minireview addresses the overlooked problem of the freshwater to marine continuum and the effects of nutrients and toxic cyanobacterial blooms moving along these waters. Marine and freshwater research have historically been conducted in isolation and independently of one another. Yet, this approach fails to account for the interchangeable transit of nutrients and biology through and between these freshwater and marine systems, a phenomenon that is becoming a major problem around the globe. This Minireview highlights what we know and the challenges that lie ahead.


Assuntos
Cianobactérias , Ecossistema , Humanos , Mudança Climática , Cianobactérias/fisiologia , Água Doce/microbiologia , Fotossíntese
16.
Front Microbiol ; 13: 1044464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504786

RESUMO

Harmful algal blooms (HABs) caused by the toxin-producing cyanobacteria Microcystis spp., can increase water column pH. While the effect(s) of these basified conditions on the bloom formers are a high research priority, how these pH shifts affect other biota remains understudied. Recently, it was shown these high pH levels decrease growth and Si deposition rates in the freshwater diatom Fragilaria crotonensis and natural Lake Erie (Canada-US) diatom populations. However, the physiological mechanisms and transcriptional responses of diatoms associated with these observations remain to be documented. Here, we examined F. crotonensis with a set of morphological, physiological, and transcriptomic tools to identify cellular responses to high pH. We suggest 2 potential mechanisms that may contribute to morphological and physiological pH effects observed in F. crotonensis. Moreover, we identified a significant upregulation of mobile genetic elements in the F. crotonensis genome which appear to be an extreme transcriptional response to this abiotic stress to enhance cellular evolution rates-a process we have termed "genomic roulette." We discuss the ecological and biogeochemical effects high pH conditions impose on fresh waters and suggest a means by which freshwater diatoms such as F. crotonensis may evade high pH stress to survive in a "basified" future.

17.
Science ; 378(6620): eade2277, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356147

RESUMO

Huisman et al. claim that our model is poorly supported or contradicted by other studies and the predictions are "seriously flawed." We show their criticism is based on an incomplete selection of evidence, misinterpretation of data, or does not actually refute the model. Like all ecosystem models, our model has simplifications and uncertainties, but it is better than existing approaches hat ignore biology and do not predict toxin concentration.


Assuntos
Toxinas Bacterianas , Lagos , Microcystis , Fósforo , Ecossistema , Lagos/química , Lagos/microbiologia , Fósforo/deficiência , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Microcystis/metabolismo
18.
Pancreatology ; 22(8): 1099-1111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379850

RESUMO

BACKGROUND & AIMS: The CEL gene encodes the digestive enzyme carboxyl ester lipase. CEL-HYB1, a hybrid allele of CEL and its adjacent pseudogene CELP, is a genetic variant suggested to increase the risk of chronic pancreatitis (CP). Our aim was to develop a mouse model for CEL-HYB1 that enables studies of pancreatic disease mechanisms. METHODS: We established a knock-in mouse strain where the variable number of tandem repeat (VNTR) region of the endogenous mouse Cel gene was substituted with the mutated VNTR of the human CEL-HYB1 allele. Heterozygous and homozygous Cel-HYB1 mice and littermate wildtype controls were characterized with respect to pancreatic pathology and function. RESULTS: We successfully constructed a mouse model with pancreatic expression of a humanized CEL-HYB1 protein. The Cel-HYB1 mice spontaneously developed features of CP including inflammation, acinar atrophy and fatty replacement, and the phenotype became more pronounced as the animals aged. Moreover, Cel-HYB1 mice were normoglycemic at age 6 months, whereas at 12 months they exhibited impaired glucose tolerance. Immunostaining of pancreatic tissue indicated the formation of CEL protein aggregates, and electron microscopy showed dilated endoplasmic reticulum. Upregulation of the stress marker BiP/GRP78 was seen in pancreatic parenchyma obtained both from Cel-HYB1 animals and from a human CEL-HYB1 carrier. CONCLUSIONS: We have developed a new mouse model for CP that confirms the pathogenicity of the human CEL-HYB1 variant. Our findings place CEL-HYB1 in the group of genes that increase CP risk through protein misfolding-dependent pathways.


Assuntos
Lipase , Pancreatite Crônica , Humanos , Camundongos , Animais , Idoso , Lactente , Lipase/genética , Pancreatite Crônica/genética , Alelos , Repetições Minissatélites , Fatores de Risco
19.
Cell Rep ; 41(1): 111444, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198265

RESUMO

Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Vias Visuais , Animais , Cálcio/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Prurido/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Vias Visuais/metabolismo
20.
Microbiol Resour Announc ; 11(9): e0028922, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35976009

RESUMO

Here, we report the assembled and annotated genome of the freshwater diatom Fragilaria crotonensis SAG 28.96. The 61.85-Mb nuclear genome was assembled into 879 contigs, has a GC content of 47.40%, contains 26,015 predicted genes, and shows completeness of 81%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...