Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 700: 134392, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704513

RESUMO

Estuaries worldwide are undergoing changes to patterns of aquatic productivity because of human activities that alter flow, impact sediment delivery and thus the light field, and contribute nutrients and contaminants like pesticides and metals. These changes can influence phytoplankton communities, which in turn can alter estuarine food webs. We used multiple approaches-including high-resolution water quality mapping, synoptic sampling, productivity and nitrogen uptake rates, Lagrangian parcel tracking, enclosure experiments and bottle incubations-over a short time period to take a "spatial snapshot" of conditions in the northern region of the San Francisco Estuary (California, USA) to examine how environmental drivers like light availability, nutrients, water residence time, and contaminants affect phytoplankton abundance and community attributes like size distribution, taxonomic structure, and nutrient uptake rates. Zones characterized by longer residence time (15-60 days) had higher chlorophyll-a concentrations (9 ±â€¯4 µg L-1) and were comprised primarily of small phytoplankton cells (<5 µm, 74 ±â€¯8%), lower ammonium concentrations (1 ±â€¯0.8 µM), higher nitrate uptake rates, and higher rates of potential carbon productivity. Conversely, zones characterized by shorter residence time (1-14 days) had higher ammonium concentration (13 ±â€¯5 µM) and lower chlorophyll-a concentration (5 ±â€¯1 µg L-1) with diatoms making up a larger percent contribution. Longer residence time, however, did not result in the accumulation of large (>5 µm) cells considered important to pelagic food webs. Rather, longer residence time zones had a phytoplankton community comprised primarily of small cells, particularly picocyanobacteria that made up 38 ±â€¯17% of the chlorophyll-a - nearly double the concentration seen in shorter residence time zones (22 ±â€¯7% picocyanobacterial of chlorophyll-a). Our results suggest that water residence time in estuaries may have an effect as large or larger than that experimentally demonstrated for light, contaminants, or nutrients.


Assuntos
Ecossistema , Cadeia Alimentar , Fitoplâncton/crescimento & desenvolvimento , Compostos de Amônio , Clorofila A , Diatomáceas , Monitoramento Ambiental , Estuários , Água Doce , Nitrogênio/análise , São Francisco , Qualidade da Água
2.
Mar Pollut Bull ; 64(3): 574-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22236959

RESUMO

Primary production in the Northern San Francisco Estuary (SFE) has been declining despite heavy loading of anthropogenic nutrients. The inorganic nitrogen (N) loading comes primarily from municipal wastewater treatment plant (WTP) discharge as ammonium (NH(4)). This study investigated the consequences for river and estuarine phytoplankton of the daily discharge of 15 metric tons NH(4)-N into the Sacramento River that feeds the SFE. Consistent patterns of nutrients and phytoplankton responses were observed during two 150-km transects made in spring 2009. Phytoplankton N productivity shifted from NO(3) use upstream of the WTP to productivity based entirely upon NH(4) downstream. Phytoplankton NH(4) uptake declined downstream of the WTP as NH(4) concentrations increased, suggesting NH(4) inhibition. The reduced total N uptake downstream of the WTP was accompanied by a 60% decline in primary production. These findings indicate that increased anthropogenic NH(4) may decrease estuarine primary production and increase export of NH(4) to the coastal ocean.


Assuntos
Amônia/análise , Rios/química , Poluentes Químicos da Água/análise , Amônia/toxicidade , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Eutrofização , São Francisco , Água do Mar/química , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/estatística & dados numéricos
3.
FEMS Microbiol Ecol ; 55(3): 391-402, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16466378

RESUMO

PCR primers were designed and used to amplify glnA, the gene that encodes glutamine synthetase, from pure cultures of cyanobacteria and four samples from different marine environments. The glnA phylogeny was similar to that of the 16S rRNA gene, indicating that glnA gene sequences can be used to identify cyanobacteria expressing the glnA gene. Diverse unicellular cyanobacteria glnA genes were recovered from the North Pacific Subtropical Gyre, Monterey Bay, Chesapeake Bay and waters off the New Jersey coast. The majority of sequences were closely related to sequences from Synechococcus strains (78-88% identical DNA sequences). A few sequences that clustered with Prochlorococcus glnA genes were recovered from Monterey Bay and the North Pacific Subtropical Gyre. The expression of glnA was assayed by reverse transcriptase PCR to determine if there was a daily pattern in gene expression of samples collected from New Jersey's Longterm Environmental Observatory site (LEO-15). glnA expression varied over the day, with different glnA sequence types exhibiting different daily cycles. Results showed that the glnA gene can be used to characterize the diversity of natural populations of cyanobacteria, and to characterize gene expression patterns of individual species or strains.


Assuntos
Cianobactérias/enzimologia , Variação Genética , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Água do Mar/microbiologia , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Primers do DNA , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie
4.
Science ; 306(5693): 79-86, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15459382

RESUMO

Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.


Assuntos
Evolução Biológica , Diatomáceas/genética , Ecossistema , Genoma , Análise de Sequência de DNA , Adaptação Fisiológica , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/fisiologia , Animais , Núcleo Celular/genética , Cromossomos , DNA/genética , Diatomáceas/química , Diatomáceas/citologia , Diatomáceas/metabolismo , Metabolismo Energético , Ferro/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mitocôndrias/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , Fotossíntese , Plastídeos/genética , Mapeamento por Restrição , Alinhamento de Sequência , Ácido Silícico/metabolismo , Simbiose , Ureia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...